
RED HAT STORAGE REPLICATION
MECHANISM AND SPLIT-BRAIN
SCENARIOS
PATRIC UEBELE / VIJAY BELLUR

Document History

Version Revision Date Contributor Revision Description
1.0 12/09/12 Patric Uebele / Vijay

Bellur
Initial version

TABLE OF CONTENTS

Replicated volumes in Red hat storage 2.0..3

Replication Algorithm in Red Hat Storage 2.0...3
The Conceptual Process of a Write...4

Self-Healing ... 5

Split-Brain Scenario.. 7

References... 9

Red Hat Storage Replication Mechanism and Split-Brain Scenarios |Patric Uebele/Vijay Bellur 2

REPLICATED VOLUMES IN RED HAT STORAGE 2.0

Replicated volumes replicates files across bricks in the volume. You can use replicated volumes in environments where

high-availability and high-reliability are critical. The number of bricks should be equal to the replica count for a replicated

volume (or a multiple of the replica count, resulting in a distributed-replicated volume). To protect against server and disk

failures, it is recommended that the bricks of the volume are from different servers.

Illustration of a replicated volume (replica count of 2)

Replication Algorithm in Red Hat Storage 2.0

Replication is the most necessarily complex part of Red Hat Storage (RHS), and one of its key differentiators from other

solutions. In RHS, the approach is based on using a changelog to mark files as potentially “dirty” while they’re being

modified, so that they can be recovered if the modification fails on one replica in the middle of a write or if one of the bricks

is not available during a write operation to a file in a replicated volume.

Each file and directory has a changelog which is implemented by a collection of extended attributes. For every replica, the

extended attribute trusted.afr.<VOLUME>-<CLIENT> is being used to encode the number of pending operations on a file

or directory. E.g.

[root@server1 export1]# getfattr -m. -d -e hex /export1/splitfile

getfattr: Removing leading '/' from absolute path names

file: export1/splitfile

trusted.afr.repvol1-client-0=0x000000000000000000000000

trusted.afr.repvol1-client-1=0x000000000000000000000000

trusted.gfid=0x03d37449ee9e4950932b40d87e445100

Red Hat Storage Replication Mechanism and Split-Brain Scenarios |Patric Uebele/Vijay Bellur 3

[root@server2 export1]# getfattr -m. -d -e hex /export1/splitfile

getfattr: Removing leading '/' from absolute path names

file: export1/splitfile

trusted.afr.repvol1-client-0=0x000000000000000000000000

trusted.afr.repvol1-client-1=0x000000000000000000000000

trusted.gfid=0x03d37449ee9e4950932b40d87e445100

The trusted.afr atribute represents three 4 bytes counters for pending data, metadata and directory entry operations. Each

replica contains a changelog for every other replica, so that a failure of one replica does not wipe out both the write and its

log. For pending data writes, while brick-0 was not available, the resulting pending matrix looks like:

The Conceptual Process of a Write

 The process of writing to a file on a replicated volume consists of the following steps:

1. Take a lock on the byte-range of the file to be written to on all the replicas. This prevents simultaneous updates

from happening at the replicas in different orders, which is hard to reconcile.

2. Increment the changelog (extended attribute trusted.afr) of the file to reflect ongoing write. Please note that each

replica contains a changelog for every other replica.

3. Perform the write(s) on all the replicas that are up.

4. After completion of each replica write, decrement the changelog on the other replica(s).

5. After all writes and changelog decrements are complete on all available replicas, release the lock on all the

replicas and acknowledge the write to the upper layer/client.

If there are any unfinished writes, e.g. because one of the replicas wasn’t available during a write operation, this is kept

recorded in the trusted.afr attributes as in the example below (server2 was down during the write on file “splitfile”):

[root@server1 export1]# getfattr -m. -d -e hex /export1/splitfile

getfattr: Removing leading '/' from absolute path names

file: export1/splitfile

Red Hat Storage Replication Mechanism and Split-Brain Scenarios |Patric Uebele/Vijay Bellur 4

Brick-1 Data Metadata Entry

Brick-0 0x00000012 0x00000000 0x00000000

Brick-1 0x00000000 0x00000000 0x00000000

Brick-0 Data Metadata Entry

Brick-0 0x00000000 0x00000000 0x00000000

Brick-1 0x00000000 0x00000000 0x00000000

trusted.afr.repvol1-client-0=0x000000000000000000000000

trusted.afr.repvol1-client-1=0x000000070000000000000000

trusted.gfid=0x03d37449ee9e4950932b40d87e445100

[root@server2 export1]# getfattr -m. -d -e hex /export1/splitfile

getfattr: Removing leading '/' from absolute path names

file: export1/splitfile

trusted.afr.repvol1-client-0=0x000000070000000000000000

trusted.afr.repvol1-client-1=0x000000000000000000000000

trusted.gfid=0x03d37449ee9e4950932b40d87e445100

Additionally, each brick maintains an index of files and directories that have trusted.afr bits set in

/<BRICK>/.glusterfs/indices/xattrop, e.g.

[root@server1 xattrop]# ls -l /export1/.glusterfs/indices/xattrop

total 0

---------- 23 root root 0 Aug 7 11:47 00000000-0000-0000-0000-000000000001

---------- 23 root root 0 Aug 7 11:47 00a8c854-80bd-4793-87cb-165e13103d58

---------- 23 root root 0 Aug 7 11:47 0d86381d-a111-4c63-a973-f054255f8508

---------- 23 root root 0 Aug 7 11:47 1bee865f-ce6e-4ab9-bf17-69a71f7f9291

---------- 23 root root 0 Aug 7 11:47 4cfbcbd3-166e-4707-8cef-14cbd8112daa

---------- 23 root root 0 Aug 7 11:47 6872f1c9-b573-4e5e-917c-0c26f7ea3298

....

SELF-HEALING

Once a replica with outstanding writes to it is up again, files with pending writes have to be synchronized in order to

maintain data redundancy and consistency. This is done automatically by the so-called self-heal daemon, which runs in

the background and checks every 10 minutes for issues and triggers self-healing on the entire volume or only on the files

that need healing. A self-heal can also be triggered manually with the “gluster volume heal” command. This triggers an

index based self-heal, querying the index to perform self-heal on the files listed in the index. A full self-heal (gluster volume

heal <VOLUME> full) traverses the whole brick to perform self-heal, checking the trusted.afr attributes of all files on the

brick.

The direction of synchronization is based on the values of the changelogs in the trused.afr attributes on the replicas.

Based on the value of the changelog entries, we give the replicas the following “characters”:

• IGNORANT means that the replica doesn’t have a changelog for a file, e.g. for a file that is missing on one

replica.

• INNOCENT means that the replica does have only zero entries in its changelog.

• FOOL means that the replica has non-zero entries in the changelog for itself. In other words, it got as far as the

changelog increment but not as far as the decrement, so we don’t actually know whether the write in between

made it to disk.

• WISE means that the replica has non-zero entries in the changelog for the other replica, while having only zeroes

Red Hat Storage Replication Mechanism and Split-Brain Scenarios |Patric Uebele/Vijay Bellur 5

for itself.

Red Hat Storage Replication Mechanism and Split-Brain Scenarios |Patric Uebele/Vijay Bellur 6

Brick-0
(WISE)

Data Metadata Entry

Brick-0 0x00000000 0x00000000 0x00000000

Brick-1 0x00000011 0x00000000 0x00000000

Brick-0
(INNOCENT)

Data Metadata Entry

Brick-0 0x00000000 0x00000000 0x00000000

Brick-1 0x00000000 0x00000000 0x00000000

Brick-0
(FOOL)

Data Metadata Entry

Brick-0 0x00000001 0x00000000 0x00000000

Brick-1 Don’t care Don’t care Don’t care

Based on the characters of the replicas of a volume, the source for the self-heal process is chosen. Without going into too

much detail of the algorithm, the most common scenarios are:

• All replicas are INNOCENT. Data and meta-data self-heals get triggered. RHS tries to be conservative here. The

file with smallest UID is picked up as source for meta-data healing and file with size 0 as the destination for data

self heal.

• Only one WISE replica exists. The single WISE node will be the source for the self-heal and its data will be

propagated to the other replicas

• Multiple WISE replicas exist, and they have non-zero entries in their changelogs for the other replicas. This is the

infamous “split brain” situation where modifications to a file were made on both replicas while there was no

communication between the replicas. This situation can not be resolved automatically. We will deal with it in a bit

more detail in the next section.

SPLIT-BRAIN SCENARIO

In a (data) split-brain situation, the characters of the replicas look like this:

and the extended attribute values on the replica bricks will look as in the example below:

[root@server1 export1]# getfattr -m. -d -e hex /export1/splitfile

getfattr: Removing leading '/' from absolute path names

file: export1/splitfile

trusted.afr.repvol1-client-0=0x000000000000000000000000

trusted.afr.repvol1-client-1=0x000000110000000000000000

trusted.gfid=0x03d37449ee9e4950932b40d87e445100

[root@server2 export1]# getfattr -m. -d -e hex /export1/splitfile

getfattr: Removing leading '/' from absolute path names

file: export1/splitfile

Red Hat Storage Replication Mechanism and Split-Brain Scenarios |Patric Uebele/Vijay Bellur 7

Brick-0
(WISE)

Data Metadata Entry

Brick-0 0x00000000 0x00000000 0x00000000

Brick-1 0x00000011 0x00000000 0x00000000

Brick-1
(WISE)

Data Metadata Entry

Brick-0 0x00000011 0x00000000 0x00000000

Brick-1 0x00000000 0x00000000 0x00000000

trusted.afr.repvol1-client-0=0x000000110000000000000000

trusted.afr.repvol1-client-1=0x000000000000000000000000

trusted.gfid=0x03d37449ee9e4950932b40d87e445100

The self-heal daemon will detect this split-brain situation and report errors in the log file of the self-heal daemon

/var/log/glusterfs/glustershd.log:

[2012-07-30 13:11:16.427137] E [afr-self-heal-common.c:2156:afr_self_heal_completion_cbk]
0-repvol1-replicate-0: background data self-heal failed on <gfid:03d37449-ee9e-4950-

932b-40d87e445100>

[2012-07-30 13:11:16.427180] W [afr-self-heal-

data.c:831:afr_lookup_select_read_child_by_txn_type] 0-repvol1-replicate-0:
<gfid:03d37449-ee9e-4950-932b-40d87e445100>: Possible split-brain

The gfid value gives you the file that is in a split-brain situation, the files in split-brain can also be retrieved with the gluster

volume heal command:

[root@server2 export1]# gluster volume heal repvol1 info split-brain

Heal operation on volume repvol1 has been successful

Brick server1:/export1

Number of entries: 0

Brick server2:/export1

Number of entries: 1

at path on brick

2012-07-30 09:47:37 /splitfile

Accessing files in a split-brain state from RHS clients will result in I/O errors as long as the files are in that state.

It’s up to the administrator and/or application manager to decide which copy of the files in split-brain is the valid (or more

valuable) one. Then remove the “invalid’ replicas of the files (directly on its brick filesystem) as well as its corresponding

entries in /<BRICK>/.glusters and manually trigger a full self-heal run1:

[root@server1 export1]# gluster volume heal repvol1 full

Heal operation on volume repvol1 has been successful

which synchronizes the affected file(s) (see /var/log/glusterfs/glustershd.log):

[2012-07-30 14:14:33.840540] I [afr-common.c:1340:afr_launch_self_heal] 0-repvol1-
replicate-0: background meta-data data self-heal triggered. path: <gfid:03d37449-ee9e-

4950-932b-40d87e445100>, reason: lookup detected pending operations

[2012-07-30 14:14:33.851045] I [afr-self-heal-algorithm.c:116:sh_loop_driver_done] 0-

1 Index self-heal is dependent on operations that happen from mount points of a gluster volume. Since the deletion of “bad” replica happens outside the
ambit of mount points (directly on a brick), index self-heal cannot heal such a case. The workaround is to either access that file or the parent directory.
Gluster volume heal <volname> full acts as a workaround since it does a crawl of the volume accessing all files and directories.

Red Hat Storage Replication Mechanism and Split-Brain Scenarios |Patric Uebele/Vijay Bellur 8

repvol1-replicate-0: full self-heal completed on <gfid:03d37449-ee9e-4950-932b-

40d87e445100>

[2012-07-30 14:14:33.853367] I [afr-self-heal-common.c:2159:afr_self_heal_completion_cbk]

0-repvol1-replicate-0: background meta-data data self-heal completed on <gfid:03d37449-
ee9e-4950-932b-40d87e445100>

and the trusted.afr attributes of both replicas are set to zero again:

[root@server1 export1]# getfattr -m. -d -e hex /export1/splitfile

getfattr: Removing leading '/' from absolute path names

file: export1/splitfile

trusted.afr.repvol1-client-0=0x000000000000000000000000

trusted.afr.repvol1-client-1=0x000000000000000000000000

trusted.gfid=0x03d37449ee9e4950932b40d87e445100

[root@server2 export1]# getfattr -m. -d -e hex /export1/splitfile

getfattr: Removing leading '/' from absolute path names

file: export1/splitfile

trusted.afr.repvol1-client-0=0x000000000000000000000000

trusted.afr.repvol1-client-1=0x000000000000000000000000

trusted.gfid=0x03d37449ee9e4950932b40d87e445100

Client access to the affected file(s) should now work again2.

REFERENCES

• Red Hat Storage 2.0 Administration Guide: https://access.redhat.com/knowledge/docs/en-

US/Red_Hat_Storage/2.0/html/Administration_Guide/index.html

• Red Hat Storage 2.0 Release Notes: https://access.redhat.com/knowledge/docs/en-

US/Red_Hat_Storage/2.0/html/2.0_Release_Notes/index.html

• Jeff Darcy’s blog about replication internals: http://hekafs.org/index.php/2012/03/glusterfs-algorithms-replication-

present/

2 If one still gets an I/O error, drop cached information on the client: “echo 3 > /proc/sys/vm/drop_caches”

Red Hat Storage Replication Mechanism and Split-Brain Scenarios |Patric Uebele/Vijay Bellur 9

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Storage/2.0/html/Administration_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Storage/2.0/html/Administration_Guide/index.html
http://hekafs.org/index.php/2012/03/glusterfs-algorithms-replication-present/
http://hekafs.org/index.php/2012/03/glusterfs-algorithms-replication-present/
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Storage/2.0/html/2.0_Release_Notes/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Storage/2.0/html/2.0_Release_Notes/index.html

Red Hat Storage Replication Mechanism and Split-Brain Scenarios |Patric Uebele/Vijay Bellur 10

© 2012 Red Hat, Inc. All rights reserved. “Red Hat,” Red Hat Linux, the Red Hat “Shadowman” logo, and the
products listed are trademarks or registered trademarks of Red Hat, Inc. in the US and other countries.
Linux is a registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners.

For external / internal usage.

www.europe.redhat.com

12/09/12

	Replicated volumes in Red hat storage 2.0
	Replication Algorithm in Red Hat Storage 2.0
	The Conceptual Process of a Write

	Self-Healing
	Split-Brain Scenario
	References

