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Abstract 

Distributed storage systems offer reliable and cost-effective storage of large amounts of 

data. We have evaluated three distributed storage systems: Compuverde, Gluster and 

OpenStack’s Swift, using the same hardware, consisting of 24 storage nodes and a total 

storage capacity of 768 TB of data. Compuverde offers both structured (file based) and 

unstructured (block based) storage. The read/write/delete performance of Compuverde 

Structured is compared to Gluster, and the read/write/delete performance of Compuverde 

Unstructured is compared to OpenStack’s Swift. These evaluations show that Compuverde 

outperforms the other two systems in both the structured and unstructured case. We also 

measure the recovery time when a storage node goes down. These evaluations show that 

Compuverde Unstructured recovers approximately 30 times faster than OpenStack’s Swift, 

and Compuverde Structured recovers approximately 50 times faster than Gluster. We 

identify some architectural and implementation based differences that could explain the 

performance difference between these three systems. 

1. Introduction 

A number of recent studies show that the demand for storage capacity has increased rapidly during the 

last years. The International Data Corporation (IDC) reports: “World Wide Disk Storage systems 

finished 2010 with double-digit growth, and year-over-numbers reaching around 16%, but total disk 

storage systems capacity reached 5,127 petabytes, growing 55.7% year over year” [1]. Users want to 

access their data from any location. Therefore, users are moving their data to online services like 

Dropbox and Facebook that allow them to share and access their data from anywhere; in addition, 

these services provide higher data reliability than local storage disk drives. The main problem with 

local disk drives is that data losses are very common due to hardware errors or user mistakes. A 

solution which is more expensive and more reliable is Redundant Array of Independent Disks (RAID) 

storage. The advantages of RAID storage systems are their reliability (through redundancy), 

flexibility, capability to automatically manage faulty disks without losing data, and their scalability by 

attaching new drives. However, the scalability of RAID systems is still limited; this limitation is the 

main reason for designing distributed storage systems. 

Distributed storage systems should solve two problems: they should be capable of sustaining rapidly 

growing storage demands, and they should provide efficient distribution of the stored content [2]. Two 

examples of distributed storage systems are OpenStack’s Swift
1
 and Gluster

2
. 

In this report we evaluate the performance of three distributed storage systems: Compuverde, 

OpenStack’s Swift, and Gluster. Openstack’s Swift and Gluster are both open-source distributed 

storage systems that are available for downloading and testing. 
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2. Background 

In a distributed storage system, data redundancy is usually introduced by spreading multiple replicas 

of data over a number of storage nodes in order to guarantee that stored data is available even when 

some storage nodes are unavailable. Some distributed storage systems use Distributed Hash Tables 

(DHTs) for mapping data to physical servers. Two examples of systems that use DHTs are Gluster and 

OpenStack’s Swift [22].  

In distributed storage systems, the most common interfaces are Web Service APIs (Application 

Programming Interface) like Internet Small Computer System Interface (iSCSI) [25]; REpresentational 

State Transfer (REST)-based [23, 24] and Simple Object Access Protocol (SOAP)-based [27]. iSCSI 

is an end-to-end protocol that transport I/O storage blocks (fixed-size) over IP networks and uses 

indexes to address data. SOAP is a simple XML-based protocol to let applications exchange 

information over HTTP. REST is a HTTP-based architectural style to build networked applications 

that allows access to stored objects by an Object Identifier (OID) (see Figure 1), i.e., no file or 

directory structures are supported [4]. We will refer to object-based storage system as unstructured 

storage systems. 

 
Figure 1: Object-Based Disk 

There are other file storage access methods like Network File System (NFS) and Common Internet 

File System (CIFS) which are used for accessing storage on a private network or LAN and Web-based 

Distributed Authoring and Versioning (WebDAV) which is based on HTTP. These APIs are file-based 

(variable-size) and use a path to identify the data; we denote these as structured storage systems. The 

architecture of structured storage systems is similar to Network Attached Storage (NAS) which 

provide file system functionality (see Figure 2), i.e., structured storage systems support variable file 

and directory structures [3, 21].  

 

Figure 2: Structured Storage System Architecture 
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The most well-known distributed storage systems are Amplistor [5, 30], Caringo’s CAStor [6, 31], 

Ceph [7], Cleversafe
3
 , Compuverde

4
 , EMC Atmos [8], Gluster [9], Google File System [10], Hadoop 

[11, 20], Lustre [12], OpenStack’s Swift [19], Panasas [13], Scality
5
  and Sheepdog

6
. Some of the 

distributed file systems could be used by other applications, i.e., BigTable is a distributed storage for 

structured data and it uses GFS to store log and data files [36].   

As shown in Table 1 AmpliStor, CAStor, Ceph, Cleversafe and Scality are all unstructured distributed 

storage systems. Amplistor is designed to work with HTTP/REST. Just as in Amplistor, CAStor’s 

Simple Content Storage Protocol (SCSP) is based on HTTP using a RESTful architecture [34]. Ceph 

provides an S3-compatible REST interface that allows applications to work with Amazon’s S3 service. 

Unlike the above unstructured distributed storage systems, Cleversafe provides an iSCSI device 

interface, which enables users to transparently store and retrieve files as if they were using a local hard 

drive. 

EMC Atmos is a structured distributed storage system that provides CIFS and NFS interfaces, as well 

as web standard interfaces such as SOAP and REST. Other distributed file systems such as Google 

File System, Hadoop Distributed File System (HDFS), Lustre and Panasas provide a standard POSIX 

API. Sheepdog is the only distributed storage system which is based on Linux QEMU/KVM and is 

used for virtual machines. The distributed storage systems use either Striping, Multicast or Distributed 

Hash Tables (DHTs). 

Some of the distributed file systems are also used for computing purposes, e.g., the Hadoop 

Distributed File System (HDFS) which is designed based on the Data Intensive Scalable Computing 

(DISC) architecture in order to distribute storage and computation across many servers. HDFS stores 

file system metadata and application data separately and users can reference files and directories by 

paths in the namespace (a HTTP browser can be used to browse the files of an HDFS instance) [35]. 

Lustre is an object-based file system used mainly for computing purposes. The Lustre architecture is 

designed for High Performance Computing (HPC) and is composed of three components: Metadata 

Servers (MDSs), Object Storage Servers (OSSs) and Clients. It uses striping to distribute data across a 

certain number of objects. In addition to Hadoop and Lustre, Panasas is also used for computing 

purposes and similar to Lustre, it is designed for HPC. It provides parallel and redundant access to 

object storage devices (OSDs), per-file RAID, distributed metadata management, consistent client 

caching, file locking services, and internal cluster management.  

Scality uses a ring storage system which is based upon a Distributed Hashing Mechanism with 

transactional support and failover capability for each storage node. The Sheepdog architecture is fully 

symmetric and there is no central node such as a meta-data server (Sheepdog uses the Corosync cluster 

engine [32] to avoid metadata servers). Sheepdog provides an object (variable-sized) storage and 

assigned a global unique id to each object. In Sheepdog’s object storage, target nodes calculated based 

on consistent hashing algorithm which is a schema that provides hash table functionality and each 

object replicated to 3 nodes to avoid data lost [33]. 

The remaining distributed storage systems in Table 1 are Compuverde, Gluster and OpenStack’s 

Swift. We could port these three systems to the same hardware platform (see Section 3), thus making 

it possible to compare their performance (see sections 4 and 5). In subsections 2.1, 2.2, and 2.3, we 

discuss these three systems in detail.  
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NFS) 

Other APIs 

(WebDAV, 

FTP, 

Proprietary 

API) 

AmpliStor X - - - - - X  X 

Caringo’s 

CAStor 
X - X - - X - X - 

Ceph X - - - - - X - X 

Cleversafe - X - - - - X X - 

Compuverde X - X X - X - - X 

EMC Atmos X - X - - - X - X 

Gluster - - X X X - X - - 

Google File 

System 

(GFS) 

X - X - - - X X - 

Hadoop - - X - - - X X - 

Lustre - - X - - - X X - 

OpenStack’s 

Swift 
X - - - X - - - X 

Panasas - - X - - - X - X 

Scality X - - - X - - - X 

SheepDog - X - - X - - - X 

 

Table 1: Overview of different distributed storage systems 

2.1. Compuverde 

Compuverde has no single point of failure, and no separate metadata or metadata servers. Compuverde 

uses its own proprietary caching mechanism (SSD Caching that employs Write-back policy) [26] in 

the storage nodes (see Figure 3). The solution utilizes multicasting, and the supports geographical 

dispersion, heartbeat monitoring, versioning support, self-healing and self-configuring. Compuverde 

supports a flat 128 bit addresses space (for unstructured storage) and NFS/CIFS (for structured 

storage). The system supports Linux and Windows. Compuverde’s storage solution consists of two 

parts: The first part is unstructured and it contains all storage nodes (clusters). The other part is the 

structured part of the storage solution. This part contains gateways (this corresponds to what 

OpenStack calls proxy servers) to communicate with storage nodes. The communication is based on 

TCP unicast and UDP multicast messages. Structured data storage is achieved by storing information 

about the structure in envelopes. An envelope is an unstructured file that is stored on the storage nodes 

and contains information about other envelopes and other files. The storage cluster provides 

mechanisms for maintaining scalability and availability of the structured data by replicating the 

envelopes a (configurable) number of times within the cluster as well as providing access to them by 

the use of IP-multicast technology.  

The communication between the structured and the unstructured layers starts with an IP-multicast of a 

key from the gateway; this key identifies the requested envelope. Then all nodes that have the 

requested envelope reply with information about that envelope and what other nodes contain the 

requested envelope with the current execution load on the storage node. The gateway collects this 
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information and waits until it has received answers from more than 50% of the listed storage nodes 

that contains the identifier before it makes a decision on which one to select for retrieval of the file
7
. 

 

Figure 3: Compuverde System Overview 

2.2. Gluster 

Gluster is a structured distributed storage system. Storage servers in Gluster support both NFS and 

CIFS. Gluster does not provide a client side cache in the default configuration [28]. Gluster 

recommends hardware RAID. Software RAID works, but there are performance issues with this 

approach. Gluster only provides redundancy at the server level, not at the individual disk level. For 

data availability and integrity reasons Gluster recommends RAID 6 or RAID 5 for general use cases. 

For high-performance computing applications, RAID 10 is recommended. Distribution over mirrors 

(RAID 10) is one common way to implement Gluster (see Figure 4). In this scenario, each storage 

server is replicated to another storage server using synchronous writes. In this strategy, failure of a 

single storage server is transparent, and read operations are spread across both members of the mirror. 

 
Figure 4: Gluster Distribute Over Mirrors (RAID 10) 
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Figure 5 shows the Elastic Hash Algorithm (EHA) used by Gluster. EHA determines where the data 

are stored and is a key to the ability to function without metadata. A pathname/filename is run through 

the hashing algorithm. After that, the file is placed on the selected storage. There are no metadata in 

Gluster. When accessing the file, the Gluster file system uses load balancing to access replicated 

instances. Gluster offers automatic self-healing [9, 14]. 

 
Figure 5: Gluster’s Elastic Hash Algorithm (EHA) 

2.3. OpenStack’s Swift 

OpenStack’s Swift is an unstructured distributed storage system that is developed in the Python 

programming language and supports Get/Put/Delete methods in the same way as all other distributed 

storage systems which use the HTTP protocol. These methods can be used over the REST API, while 

containers (folders) and objects (files) are available via an HTTP API. In OpenStack’s Swift, a number 

of “zones” are organized in a logical ring which represents a mapping between the names of entities 

stored on disk and their physical location. Swift is configurable in terms of how many copies (called 

“replicas”) are written, as well as how many zones that are used. Swift tries to balance the writing of 

objects to storage servers so that the write and read load is distributed. The mapping of objects to 

zones is done using a hash function. Swift does not do any caching of actual object data but Swift-

proxy can optionally work with a cache (Memcached
8
) to reduce authentication, container, and 

account calls [29]. In Swift, there are separate rings for accounts, containers, and objects. When other 

components need to perform any operation on an object, container, or account, they need to interact 

with the appropriate ring to determine its location in the cluster. OpenStack’s Swift’s ring is used by 

the proxy server and several background processes (like replication), Swift’s ring is also responsible 

for determining which devices are used for handoff in failure scenarios [15, 16, 17, 18, 19]. 

OpenStack’s Swift divides the storage space into partitions. In the case that we will study, 18 bits of 

the GUID is used to decide on which partition a certain file should be stored. This means that there are 

2
18

 = 262 144 partitions in this case. These partitions are divided into 6 zones. Zone 0 is mapped to 

storage nodes 0 to 3, zone 1 is mapped storage nodes 4 to 7, and zone 5 is mapped to storage nodes 20 

to 23. Storage nodes 0 to 7 are handled by one switch, nodes 8 to 15 by one switch and nodes 16 to 23 

by one switch (see Figure6). There are 24*16 = 384 disks in the system and the 262 144 partitions are 

                                                           
8
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spread out with 682 or 683 partitions on each disk (262144/384 = 682.666…). The 18 bits from the 

GUID will decide a partition and thus also a disk and a storage node for a file. If a file is stored on 

partition X, the two extra copies of the file (there are three copies of each file) are stored on partitions 

(X + 87 381) mod 262 144, and (X + 2 * 87 381) mod 262 144 (262 144 / 3 = 87 381.333…). 

 

Figure 6: Swift Replicas and Zones 

3. Experimental Setup 

3.1. Test Configurations 

Four different storage system configurations have been evaluated: 

1. Compuverde Unstructured  

2. Compuverde Structured  

3. OpenStack’s Swift (an unstructured storage system)  

4. Gluster (a structured storage system)  

The entire measurement takes place in two “Load Generating Clients” (see Figure 7), by running the 

same code for each configuration; the only part of the code that has been changed was the interface. 

The clients work synchronously and report the result to the “Master Controlling the Clients”, which is 

responsible for monitoring the throughput. 

The same hardware is used in each configuration. The storage system consists of 24 storage nodes, 

each containing sixteen 2 TB disks, i.e., a total of 32 TB for each node and 768 TB storage for all 24 

nodes. With the exception of configuration 1 (Compuverde Unstructured), all accesses to the storage 

system are routed through four proxy (gateway) servers. In configuration 1 the clients communicate 

directly with the storage system.  

Each proxy server has an Intel Quad processor, 16 GB RAM, and two 10 Gbit network cards. Each 

storage node has an Intel Atom D525 processor, 4 GB RAM, and a 1 Gbit network card. All storage 

nodes and proxy servers run the Linux operating system. There are four switches that are used to 

transmit data from four proxy servers and two load generating clients to the 24 storage nodes. The 

central switch is a Dell 8024F and the other three switches are Dell 7048Rs. Four Proxy Servers are 

connected to the Central Switch via four 2*10 Gbit Fibers. Two Load Generating Clients connected to 

a Central Switch via two 10 Gbit Fibers and Central switch connected to other three stand alone 

switches via three 4*10 Gbit Fibers.  
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The physical structure of the system is the same for all four cases and all measurements have been 

done in Load Generating Clients (see Figure 7). In configuration 1, the proxy servers are not used.  

 

Figure 7: The physical structure of the test configurations. 

The four test configurations will now be described. 

3.1.1. Compuverde Unstructured 

In this configuration three copies of each file are created. The proxy servers are not used, and the load 

generating clients communicate directly with the storage nodes.  

3.1.2. Compuverde Structured 

In this case two copies of each file are created. The reason for this is that this case will be compared 

with Gluster, and Gluster only supports two copies of each file. The two load generating clients 

communicate with two proxy servers each. The communication protocol between the load generating 

clients and the proxy servers is NFS/CIFS. 



9 
 

 

3.1.3. OpenStack’s Swift 

OpenStack’s Swift has three copies of each file, and the two load generating clients communicate with 

two proxy server each.  

3.1.4. Gluster 

Gluster dedicates a volume to the lock file. In Gluster the storage nodes are arranged in pairs to obtain 

fault tolerance. This means that there are only two copies of each file. The communication protocol 

between the load generating clients and the proxy servers is NFS/CIFS. 

3.2. Test Cases 

Two kinds of tests are considered in this study: performance tests and recovery tests. 

3.2.1. Performance Tests 

In these test cases the read, write and delete performance are measured: 

There are four test cases for each test configuration: 

1. We measure write performance. In these tests, a number of clients (implemented as full speed 

threads, i.e., as threads that issue write requests in a tight loop without any delay and with only 

minimal processing done between each request) running on two servers (see Figure 7) create 

files of size 0 KB, 10 KB, 100 KB, 1 MB and 10 MB, respectively. Writing 0 KB corresponds 

to creating a file and will be reported separately. We vary the number of clients from 2 to 256, 

using the steps 2, 4, 8, 16, 32, 64, 128, and 256 clients. A write operation is a combination of 

Open, Write and Close. We measure MB/s and operations/s. 

 

2. We measure read performance. In these tests, a number of clients (implemented as full speed 

threads) running on two servers (see Figure 7) read files of size 0 KB, 10 KB, 100 KB, 1 MB 

and 10 MB, respectively. Reading 0 KB corresponds to opening a file and will be reported 

separately. We vary the number of clients from 2 to 256, using the steps 2, 4, 8, 16, 32, 64, 128, 

and 256 clients. A read operation is a combination of Open, Read and Close. We measure 

MB/s and operations/s. 

 

3. We measure delete performance. In these tests, a number of clients (implemented as full speed 

threads) running on two servers (see Figure 7) delete files of size 10 KB, 100 KB, 1 MB and 10 

MB, respectively. We vary the number of clients from 2 to 256, using the steps 2, 4, 8, 16, 32, 

64, 128, and 256 clients. We measure operations/s. 

4. For the structured storage case, we use the SPECsfs2008 performance evaluation tool from the 

Standard Performance Evaluation Corporation
9
. The tool can be configured to issue a number 

of I/O Operations per Second (IOPS), and it then measures the actual achieved throughput in 

terms of IOPS and the average response time. 
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During the read/write/delete performance tests for small file sizes (0KB and 10KB), test has been done 

by writing/reading/deleting 1,000,000 files to/from the storage nodes, but for larger file sizes (100KB, 

1 MB and 10 MB) the test has been continued by writing/reading/deleting files (between 50,000 and 

100,000 files) until the results become stable and then the number of operations per second and MB/s 

were measured. 

For Gluster and OpenStack’s Swift no caching is used. In order to get fair results, the test has been 

done for Compuverde for two cases: caching and No Caching (NC) (Gluster and OpenStack do not 

support caching). We just limited the caching and No Caching tests to only 1 MB files. We have 

recorded the CPU utilization for the storage nodes (S CPU %) and for proxy servers (P CPU %) during 

the tests. Compuverde Unstructured does not use any proxy servers, so there are no recordings of 

proxy servers CPU usage for this case. 

3.2.2. Recovery Tests 

In these tests we measure how long it takes for the storage system to reconfigure itself after a node 

failure. We will measure recovery performance by reformatting one storage node. When a storage 

node is reformatted the file copies stored on that node are lost. We measure the time until the system 

has created new copies corresponding to the copies that were lost. 

4. Read and Write Performance 

In this section we will look at the read and write performance of each of the four configurations. In 

Section 5 we will compare the different configurations with each other. The exact values that 

correspond to the figures in sections 4 and 5 can be found in Appendix A. 

4.1. Compuverde Unstructured 

Figures 8(a) and 8(b) show that the throughput is low when number of clients and the size of the files 

are small; the throughput increases when number of clients and the size of the files increase. It can also 

be noted that the performance in case of using cache in the storage nodes, e.g., 1 MB files, does not 

differ so much compared to the case that using no cache, i.e., 1 MB (NC). 

 

 (a) Write Performance Test Results (Compuverde Unstructured)  
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(b) Read Performance Test Results (Compuverde Unstructured) 

Figure 8: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis 

denotes the number of clients that are writing/reading simultaneously. Figure (a) shows the write 

performance results, and Figure (b) shows the read performance results for Compuverde Unstructured 

according to Appendix A, part 1, Write/Read test results.  

4.2.  Compuverde Structured 

Figures 9(a) and 9(b) show that the data transfer rate is low when the number of clients and the size of 

the files are small and it increases when number of clients and size of files increase. It can also be 

noted that the performance difference between using caching in the storage nodes, e.g., 1 MB files, 

and using no caching, i.e., 1 MB (NC), is approximately a factor of 1.5 when writing; there is no 

significant difference between caching and no caching when reading.  

 

(a) Write Performance Test (Compuverde Structured)  
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(b) Read Performance Test (Compuverde Structured)  

Figure 9: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis 

denotes the number of clients that are writing/reading simultaneously. Figure (a) shows the write 

performance results, and Figure (b) shows the read performance results for Compuverde Structured 

according to Appendix A, part 2, Write/Read test results.  

4.3. OpenStack’s Swift 

Figures 10(a) and 10(b) show that in cases of writing/reading the files of large size (10MB), the data 

transfer rate increases rapidly when the number of the clients increases. While in case of writing files 

with size of 1MB and less the curve is quite stable. 

 

(a)  Write Performance Test (OpenStack)  
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(b)  Read Performance Test (OpenStack)  

Figure 10: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis 

denotes the number of clients that are writing/reading simultaneously. Figure (a) shows the write 

performance results, and Figure (b) shows the read performance results for OpenStack according to 

Appendix A, part 3, Write/Read test results. 

4.4. Gluster  

Figures 11(a) and 11(b) show that the data transfer rate for large files increases when the number of 

clients increases. However, for smaller files the transfer rate does not increase so much when the 

number of clients increases. In fact, when the number of clients exceeds a certain values the transfer 

rate starts to decrease. The reason for this is probably that Gluster contains contention bottlenecks 

internally. The tables in part 4 of Appendix A show that the utilization for the storage nodes never 

exceeds 50% for Gluster. For the other test configurations we get much higher utilization values. This 

is an indication that there are internal performance bottlenecks in Gluster. 

 

(a)  Write Performance Test (Gluster)  
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(b)  Read Performance Test (Gluster)  

Figure 11: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis 

denotes the number of clients that are writing/reading simultaneously. Figure (a) shows the write 

performance results, and Figure (b) shows the read performance results for Gluster according to 

Appendix A, part 4, Write/Read test results.  

5. Comparing the Distributed Storage Systems 

We have evaluated two unstructured storage systems (OpenStack’s Swift and Compuverde 

Unstructured) and two structured storage systems (Gluster and Compuverde Structured). In Section 

5.1 we compare the performance of the two unstructured systems with each other and in Section 5.2 

we compare the performance of the two structured systems with each other. In Section 5.3 we compare 

the time to recreate all the file copies in a storage system in case one of the storage nodes fails. 

5.1.  Compuverde Unstructured vs. OpenStack’s Swift  

We talked to several online storage provider companies and it turned out that most of their users store 

small files with an average size of 1 MB. Therefore, the performance tests (Write/Read/Delete) are 

compared only for 1 MB. Figure 12(a) shows that, the throughput of Compuverde Unstructured for 

256 clients (both when using caching and no caching (NC)) was roughly 800 MB/s, while for 

OpenStack’s Swift it was around 200 MB/s. Figure 12(b) shows that, the throughput of Compuverde 

Unstructured for 256 clients (both when using caching and no caching (NC)) was roughly 

1600MB/sec to 1900 MB/sec, while for OpenStack’s Swift it was around 600 MB/s. The create files 

performance test has been done by creating (writing) 0 KB files. The tables in Appendix A that 

correspond to Figure 12(c) show that the performance of Compuverde Unstructured for 256 clients 

was 10118 operations/s in case of caching and 6500 operations/s in case of no cache (NC); for 

OpenStack’s Swift it was 600 operations/s. The open files performance test has been done by opening 

(reading) 0 KB files. Performance test results listed in the tables in Appendix A that correspond to 

Figure 12(d) show that the performance of Compuverde Unstructured for 256 clients was 11153 

operations/s in case of caching and 12826 operations/s in case of no cache (NC); for OpenStack’s 

Swift it was 4500 operations/s. The delete files performance test has been done by deleting files with a 
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size of 1 MB. The tables in Appendix A that correspond to Figure 12(e) show that the performance of 

Compuverde Unstructured for 256 clients was 9956 operations/s in case of caching and 8145 

operations/s in case of no cache (NC); for OpenStack’s Swift it was 498 operations/s.  

 
(a)  Write performance Compuverde Unstructured vs. OpenStack’s Swift 

 
(b)  Read performance Compuverde Unstructured vs. OpenStack’s Swift 

 
(c)  Create files performance Compuverde Unstructured vs. OpenStack’s Swift 
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(d)  Open files performance Compuverde Unstructured vs. OpenStack’s Swift 

 
(e)  Delete file performance Compuverde Unstructured vs. OpenStack’s Swift 

Figure 12: Figure (a) shows the comparison between write performance of Compuverde Unstructured 

and OpenStack’s Swift for files of 1 MB. Figure (b) shows the comparison between read performance 

of Compuverde Unstructured and OpenStack’s Swift for files of 1 MB. Figure (c) shows the 

comparison between create file performance of Compuverde Unstructured and OpenStack’s Swift. 

Figure (d) shows the comparison between open file performance of Compuverde Unstructured and 

OpenStack’s Swift. Figure (e) shows the comparison between delete performance of Compuverde 

Unstructured and OpenStack’s Swift for files of 1 MB. All values are provided in Appendix A. 

5.2.  Compuverde Structured vs. Gluster  

The write/read/delete performance tests have been done only for 1 MB according to the conducted 

interviews with the on-line storage providers. The tables in Appendix A that correspond to Figure 

13(a) show that the throughput of Compuverde Structured for 256 clients was 655 MB/s in case of 

caching and 450 MB/s in case of no cache (NC); for Gluster it was 164 MB/s. The tables in Appendix 

A that correspond to Figure 13(b) show that the throughput of Compuverde Structured for 256 clients 
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was 780 MB/s in case of caching and 821 MB/s in case of no cache (NC); for Gluster it was 270 

MB/s. The create files performance test has been done by creating (writing) 0 KB files. The tables in 

Appendix A that correspond to Figure 13(c) show that the performance for Compuverde Structured for 

256 clients was 7370 operations/s in case of caching and 1239 operations/s in case of no cache (NC); 

for Gluster it was 241 operations/s. The open files performance test has been done opening (reading) 

files of 0 KB size. The tables in Appendix A that correspond to Figure 13(d) show that the 

performance for Compuverde Structured for 256 clients was 11116 operations/s in case of caching and 

12458 operations/s in case of no cache (NC); for Gluster it was 1029 operations/s. The delete files 

performance test has been done by deleting files of 1MB size. The tables in Appendix A that 

correspond to Figure 13(e) show that the performance for Compuverde Structured for 256 clients was 

3548 operations/s in case of caching and 3367 operations/s in case of no cache (NC); for Gluster it was 

441 operations/s.  

 

(a)  Write performance Compuverde Structured vs. Gluster 

 

(b)  Read performance Compuverde Structured vs. Gluster 
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(c)  Create files performance Compuverde Structured vs. Gluster 

 
(d)  Open files performance Compuverde Structured vs. Gluster 

 
(e)  Delete files performance Compuverde Structured vs. Gluster 

Figure 13: Figure (a) shows the comparison between write performance of Compuverde Structured 

and Gluster for files of 1 MB. Figure (b) shows the comparison between read performance of 

Compuverde Structured and Gluster for files of 1MB. Figure (c) shows the comparison between create 

file performance of Compuverde Structured and Gluster. Figure (d) shows the comparison between 

open file performance of Compuverde Structured and Gluster. Figure (e) shows the comparison 

between delete performance of Compuverde Structured and Gluster for files of 1 MB. All values are 

provided in Appendix A. 
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The test results using the Spec2008sfs tool are shown in Figures 14(a) and 14(b).  Figure 14(a) shows 

that both Compuverde Structured and Gluster meet the number of requested IOPS for the first two 

cases, i.e., for 3000 IOPS and 4000 IOPS. However, when the requested numbers of IOPS increased to 

5000 and above, Compuverde Structured delivered a number of IOPS relatively near to the requested 

one, while Gluster delivers a number of IOPS that is significantly smaller than the requested number 

of IOPS. Figure 14(b) shows the result of response time test that has been obtained using the 

Spec2008sfs performance evaluation tool. Compuverde’s response time is in the range of 3.5 ms to 17 

ms, while for Gluster the response time is between 10.1 ms and 33.3 ms.  

 

(a)  Performance evaluation Compuverde Structured vs. Gluster 

 

(b)  Performance Evaluation Compuverde Structured vs. Gluster 

Figure 14: Figure (a) and (b) show the comparison between the performance of Compuverde 

Structured and Gluster by using the Spec2008sfs tool.  



20 
 

5.3. Recovery Test 

We did the recovery test for all four different configurations (Compuverde Unstructured, Compuverde 

Structured, OpenStack’s Swift and Gluster). The same recovery test has been run twice for each 

configuration.  

Compuverde Unstructured 19 minutes (1140 s) 18 minutes (1080 s) 

Compuverde Structured 22 minutes (1320 s) 22 minutes (1320 s) 

OpenStack 9 hours 27 minutes (34020 s) 10 hours 16 minutes (36960 s) 

Gluster 18 hours 27 minutes (66420 s) 18 hours 29 minutes (66540 s) 

Table 2: Recovery Test Results 

As been shown in Table 2, the recovery time for Compuverde Unstructured was 18-19 minutes and the 

recovery time for OpenStack’s Swift was 9 hours and 27 minutes. This means that the recovery time 

for Compuverde Unstructured is almost 30 times faster than that of OpenStack’s Swift. One reason 

could be that OpenStack is written in Python language which is considered being a programming 

language that does not perform so fast. The other reason is that OpenStack uses the rsync
10

 command 

that is responsible for maintaining object replicas, consistency of objects and perform update 

operations. It seems that using rsync command introduces a significant overhead which causes a 

performance decrease. The situation is similar for Compuverde Structured with a recovery time of 22 

minutes compared to Gluster with recovery time of 18 hours and 27 minutes. Compuverde Structured 

recovery time is 50 times faster than Gluster recovery time. Gluster also uses rsync for replication, and 

also in this case we believe that this is one reason for the performance reduction. Another reason for 

the low performance of Gluster compare to Compuverde Structured is the architecture that used by 

Gluster for replication. In Gluster the proxy servers are doing the self-healing while in Compuverde 

Structured storage nodes are performing the self-healing by themselves without involving any proxy 

servers which results in many-to-many replication pattern. Consequently, it seems that it is much more 

efficient to build the synchronization protocols from scratch than to base them on standard software 

applications such as rsync (which is used in both OpenStack and Gluster). Also, the centralized 

recovery approach in Gluster (i.e., using the proxy servers) does not seem to be as efficient as the 

distributed approach (i.e., using the storage nodes themselves) in Compuverde.  The use of the Phyton 

programming language is probably a contributing factor to the relatively low performance of 

OpenStack.     

6. Discussion 

Compared to conventional centralized storage systems, a distributed storage system allows for more 

flexible scaling in several dimensions. It allows for not only increased performance and redundancy, 

but also affords improved energy efficiency and lowering the carbon footprint of the system. For 

instance, by removing the need for a central, very high-powered storage controller, replacing it with 

low-cost and low wattage storage nodes, such as the ones used in the experiments presented in this 

paper, the power used by the system can be decreased.  

                                                           
10

 rsync is a file transfer program for Unix-like systems.  
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Furthermore, by decoupling the intelligence for providing the storage service, and placing it in the 

storage nodes, not only is redundancy improved, but it also allows for exchanging the individual nodes 

for nodes with a lower carbon footprint as technology advances. This makes the system more flexible 

with respect to the hardware used to build the system, and makes it possible to take immediate 

advantage of improvements in sustainable technologies. One example would be exchanging 

conventional hard drive for solid state drives as prices decrease. Another advantage of moving the 

system logic to the storage nodes is that this allows system performance to scale linearly with the 

number of nodes. This is particularly apparent when employing multicast. 

7. Conclusions 

The performance evaluations of the unstructured storage systems show that the open, read, write, and 

delete performance of Compuverde Unstructured is significantly higher than for OpenStack’s Swift. 

The performance advantage of Compuverde Unstructured is particularly clear when the load is high, 

i.e., when the number of clients that issue simultaneous accesses to the system is high. The evaluations 

show that the performance advantage of Compuverde Unstructured is not a result of caching in the 

storage nodes, i.e., the performance difference using cache and no cache (NC) is relatively small. One 

possible explanation to the low performance of OpenStack’s Swift is that the OpenStack system is 

written in the Python programming language, which is not a compiled language and is slow compared 

to C/C++. The other explanation for OpenStack’s low performance could be the proxy servers. In the 

OpenStack architecture, data has to flow through proxy servers, which is a performance bottleneck; 

Compuverde Unstructured does not use any proxy servers and clients are connected directly to the 

storage nodes.    

The performance evaluations of the structured storage systems show that the open, read, write, and 

delete performance of Compuverde Structured is significantly higher than for Gluster. The 

performance advantage of Compuverde Structured is particularly clear when the load is high, i.e., 

when the number of clients that issue simultaneous access to the system is high. The performance in 

terms of throughput goes down for Gluster when the load increases. This behavior indicates that there 

are internal bottlenecks (e.g., file level locking) and contention problems in Gluster. The evaluation 

using the Spec2008sfs tool show that same behavior, i.e., the performance of Compuverde Structured, 

in terms of throughput and response times, is better than that of Gluster and Gluster suffers from 

contention problems when the load increases. Compuverde Structured has some contention problems 

when the load increases, but not to the same extent as Gluster. The evaluations show that the 

performance advantage of Compuverde Structured is not a result of caching in the storage nodes. In 

some cases caching in the storage nodes adds a significant advantage, but the performance of 

Compuverde Structured is better than Gluster also without caching in the storage nodes.  

The recovery test show that Compuverde recovers from a storage node failure much faster than 

OpenStack’s Swift and Gluster. One reason for Gluster to perform slower than Compuverde Structure 

could be its architecture which involves proxy servers in self healing while Compuverde uses the 

many-to-many replication pattern and only involves storage nodes in self healing. A major factor for 

OpenStack’s Swift to perform slower than Compuverde Unstructured could be the Python 

programming language. Another reason could be that Compuverde has built its own recovery protocol 

from scratch, whereas OpenStack and Gluster base their protocols on existing applications (e.g.,  

rsync). 

Finally, our study provides quantitative performance values measured on a large real world distributed 

storage system. Such values can be used for comparisons by other researchers and practitioners. 
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APPENDIX A, MEASURED PERFORMANCE VALUES 
 

1. COMPUVERDE (UNSTRUCTURED) 

Write 0 KB 0 KB (NC) 10 KB 100 KB 1 MB 1 MB (NC) 10 MB 
Clients / File size Op/s CPU % Op/s CPU % MB/s CPU % MB/s CPU % MB/s CPU % MB/s CPU % MB/s CPU % 

2 1096 12 478 3 7 12 46 14 112 14 71 5 151 12 

4 1965 24 890 5 12 24 80 23 186 20 101 8 239 23 

8 3341 27 1296 8 20 36 128 27 292 25 167 12 361 25 

16 4982 50 1916 13 30 70 195 50 419 35 278 23 491 37 

32 6702 73 2866 18 29 90 260 75 556 54 444 27 611 48 

64 8141 77 4146 21 51 95 291 73 682 72 592 49 723 60 

128 9428 95 4944 30 66 97 356 74 767 76 753 58 808 73 

256 10118 98 6500 55 80 98 469 77 833 89 838 72 851 75 

 

Read 0 KB 
 

0 KB (NC) 10 KB 100 KB 1 MB 1 MB (NC) 10 MB 
Clients / File size Op/s CPU % Op/s CPU % MB/s CPU % MB/s CPU % MB/s CPU % MB/s CPU % MB/s CPU % 

2 1057 9 1152 4 7 5 24 4 39 4 38 3 95 3 

4 2210 15 2565 15 15 12 50 5 86 4 57 3 193 3 

8 4327 25 5110 25 30 24 85 8 181 5 154 4 386 5 

16 7901 46 10086 45 57 30 161 12 357 7 319 5 705 7 

32 10709 53 12490 50 86 50 304 26 640 15 615 13 1087 15 

64 11103 55 12761 50 100 60 450 46 1064 26 941 24 1554 24 

128 11165 55 12792 53 101 68 700 73 1544 40 1546 28 1778 27 

256 11153 56 12826 54 99 72 795 77 1913 50 1612 43 2239 28 
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Delete 1 MB 
 

1 MB (NC) 
Clients / File size Op/s CPU % Op/s CPU % 

2 3078 53 2230 30 

4 7076 62 3936 45 

8 8092 70 5460 47 

16 8495 73 6754 50 

32 9636 74 7391 45 

64 9822 74 7990 35 

128 9840 73 8209 49 

256 9956 73 8145 49 

 

2. COMPUVERDE (STRUCTURED) 

Write 0 KB 0 KB (NC) 10 KB 100 KB 1 MB 1 MB (NC) 10 MB 

Clients / 
File size 

Op/s 
S 

CPU 
% 

P 
CPU 

% 
MB/s 

S 
CPU 

% 

P 
CPU 

% 
MB/s 

S 
CPU 

% 

P 
CPU 

% 
MB/s 

S 
CPU 

% 

P 
CPU 

% 

MB
/s 

S 
CPU 

% 

P 
CPU 

% 

MB
/s 

S 
CPU 

% 

P 
CPU 

% 

MB
/s 

S 
CPU 

% 

P 
CPU 

% 

2 640 24 12 182 4 4 5 25 13 45 
  

126 20 10 43 5 5 142 
  

4 1266 38 19 313 7 5 10 46 18 87 
  

222 26 16 100 11 10 238 
  

8 2098 75 25 459 9 5 17 75 23 141 
  

353 58 31 169 20 20 351 
  

16 2650 100 32 576 15 8 24 95 34 204 
  

488 80 52 229 26 25 492 
  

32 4453 100 44 814 22 13 33 100 40 248 
  

630 90 74 356 45 39 619 
  

64 6276 99 58 1007 20 13 43 96 62 278 
  

640 93 81 446 48 60 715 
  

128 7048 96 63 1171 23 16 46 97 42 304 
  

648 98 90 443 51 70 773 
  

256 7370 97 71 1239 25 25 38 94 39 272 
  

655 98 93 450 53 68 784 
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Read 0 KB 0 KB (NC) 10 KB 100 KB 1 MB 1 MB (NC) 10 MB 

Clients / 
File size 

Op/s 
S 

CPU 
% 

P 
CPU 

% 
MB/s 

S 
CPU 

% 

P 
CPU 

% 

MB/
s 

S 
CPU 

% 

P 
CPU 

% 

MB
/s 

S 
CPU 

% 

P 
CPU 

% 

MB
/s 

S 
CPU 

% 

P 
CPU 

% 

MB
/s 

S 
CPU 

% 

P 
CPU 

% 
MB/s 

S 
CPU 

% 

P 
CPU 

% 

2 779 5 7 786 4 6 5 4 9 31 
  

37 3 12 38 3 19 75 
  

4 1700 12 10 1769 11 10 11 6 15 48 
  

73 4 26 61 4 22 154 
  

8 3851 24 18 3985 24 19 16 11 39 87 
  

146 4 46 147 5 45 304 
  

16 7733 28 32 8189 30 34 40 25 54 154 
  

295 6 75 310 6 72 574 
  

32 10716 50 47 12359 49 53 61 35 90 205 
  

523 13 90 550 12 92 957 
  

64 11171 50 62 12859 50 57 93 54 96 294 
  

794 17 98 837 23 98 1188 
  

128 11172 51 72 12857 51 63 100 70 95 302 
  

787 18 99 823 22 98 1250 
  

256 11116 55 84 12458 50 61 55 68 82 241 
  

780 20 99 821 23 99 1258 
  

 

 

 

 

 

 

 

 

Spec2008sfs 
 

Req IOPS IOPS Resp (ms) 

2000 
  

3000 3007 3,5 

4000 4010 4,4 

5000 4931 4,8 

6000 5504 7,3 

7000 5819 11,9 

8000 5480 17 

9000 
  

Delete 1 MB 1 MB (NC) 
Clients / File size Op/s S CPU % P CPU % Op/s S CPU % P CPU % 

2 942 
  

730 
  

4 1892 
  

1150 
  

8 2503 
  

1506 
  

16 2647 
  

1691 
  

32 2725 
  

2117 
  

64 3142 
  

2580 
  

128 3641 
  

2944 
  

256 3548 
  

3367 
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3. OPENSTACK 

Write 0 KB 10 KB 100 KB 1 MB 10 MB 
Clients / File size Op/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % 

2 67 35 34 35 op/s 29 8 3 30 4 18 49 12 40 29 6 

4 115 38 10 1 38 8 6 33 7 23 49 12 76 29 19 

8 190 41 14 1 42 11 10 35 11 39 53 12 129 31 22 

16 292 43 18 1,9 43 15 16 46 16 68 80 26 207 56 28 

32 375 46 26 2,6 47 23 23 49 23 124 87 27 314 62 41 

64 467 74 35 3,5 54 30 33 55 23 162 85 25 429 87 74 

128 528 87 44 3,9 60 37 38 86 23 202 84 47 521 95 81 

256 600 82 50 4,2 60 60 46 76 44 233 92 60 578 96 92 

 

Read 0 KB 10 KB 100 KB 1 MB 10 MB 
Clients / File size Op/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % 

2 253 32 6 1,5 32 7 12 30 4 25 48 6 80 22 6 

4 477 35 13 3,4 33 13 26 30 10 51 48 11 164 24 14 

8 850 35 23 6,4 40 19 38 33 17 106 51 17 316 29 30 

16 1703 38 42 14 42 47 66 38 35 212 62 38 565 35 55 

32 2550 47 75 23 45 65 118 41 53 435 65 70 849 38 78 

64 3332 70 28 24 39 30 215 53 82 589 67 90 901 48 93 

128 4000 42 35 25 62 23 248 64 98 598 69 80 911 51 98 

256 4500 43 95 30 45 40 267 69 99 600 86 100 953 55 99 
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Delete 1 MB 
Clients / File size Op/s S CPU % P CPU % 

2 27 51 3 

4 54 52 3 

8 103 54 6 

16 170 56 15 

32 280 56 17 

64 347 65 22 

128 450 87 22 

256 498 89 28 

 

4. GLUSTER 

Write 0 KB 10 KB 100 KB 1 MB 10 MB 
Clients / File size Op/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % 

2 65 7 12 1 6 17 6 6 9 34 6 9 63 5 10 

4 120 12 17 1 10 17 11 11 18 64 13 19 130 12 20 

8 233 19 28 2 44 44 17 18 35 107 18 42 217 24 45 

16 323 31 42 3 30 49 21 19 46 144 22 44 304 30 52 

32 377 35 39 3 40 42 24 24 38 168 24 48 387 42 56 

64 330 35 38 3 30 29 22 34 32 179 24 50 434 43 59 

128 290 40 33 3 32 29 20 22 34 186 35 51 458 41 69 

256 241 45 33 3 35 37 22 37 39 164 31 44 462 41 67 
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Read 0 KB 10 KB 100 KB 1 MB 10 MB 
Clients / File size Op/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % 

2 548 8 9 3 5 27 23 4 10 38 6 11 30 6 9 

4 1151 14 20 6 9 11 44 8 11 45 8 18 53 12 20 

8 1835 25 40 11 20 24 72 15 49 79 12 43 92 14 38 

16 1945 36 
 

17 33 62 126 24 68 129 24 58 143 18 46 

32 2059 43 34 18 39 69 158 32 72 197 28 71 192 22 53 

64 1431 28 21 14 39 68 147 35 80 250 36 77 239 24 55 

128 1080 31 27 12 31 60 127 30 83 296 27 78 284 28 64 

256 1029 31 26 13 36 59 117 45 62 270 40 80 300 32 66 

 

 

 

Delete 1 MB 
Clients / File size Op/s S CPU % P CPU % 

2 383 8 9 

4 688 12 10 

8 1200 23 37 

16 1359 34 39 

32 1400 35 42 

64 970 16 34 

128 581 38 41 

256 441 25 28 

 

Spec2008sfs  
Req IOPS IOPS Resp (ms) 

2000 
  

3000 3008 10,1 

4000 4017 11 

5000 3922 23,9 

6000 3821 25,9 

7000 4019 24,6 

8000 2977 33,3 

9000 
  


