
1

Performance Evaluation of Distributed Storage Systems

Sogand Shirinbab, Lars Lundberg, David Erman

School of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

Sogand.Shirinbab@bth.se, Lars.Lundberg@bth.se, David.Erman@bth.se

Abstract

Distributed storage systems offer reliable and cost-effective storage of large amounts of

data. We have evaluated three distributed storage systems: Compuverde, Gluster and

OpenStack’s Swift, using the same hardware, consisting of 24 storage nodes and a total

storage capacity of 768 TB of data. Compuverde offers both structured (file based) and

unstructured (block based) storage. The read/write/delete performance of Compuverde

Structured is compared to Gluster, and the read/write/delete performance of Compuverde

Unstructured is compared to OpenStack’s Swift. These evaluations show that Compuverde

outperforms the other two systems in both the structured and unstructured case. We also

measure the recovery time when a storage node goes down. These evaluations show that

Compuverde Unstructured recovers approximately 30 times faster than OpenStack’s Swift,

and Compuverde Structured recovers approximately 50 times faster than Gluster. We

identify some architectural and implementation based differences that could explain the

performance difference between these three systems.

1. Introduction

A number of recent studies show that the demand for storage capacity has increased rapidly during the

last years. The International Data Corporation (IDC) reports: “World Wide Disk Storage systems

finished 2010 with double-digit growth, and year-over-numbers reaching around 16%, but total disk

storage systems capacity reached 5,127 petabytes, growing 55.7% year over year” [1]. Users want to

access their data from any location. Therefore, users are moving their data to online services like

Dropbox and Facebook that allow them to share and access their data from anywhere; in addition,

these services provide higher data reliability than local storage disk drives. The main problem with

local disk drives is that data losses are very common due to hardware errors or user mistakes. A

solution which is more expensive and more reliable is Redundant Array of Independent Disks (RAID)

storage. The advantages of RAID storage systems are their reliability (through redundancy),

flexibility, capability to automatically manage faulty disks without losing data, and their scalability by

attaching new drives. However, the scalability of RAID systems is still limited; this limitation is the

main reason for designing distributed storage systems.

Distributed storage systems should solve two problems: they should be capable of sustaining rapidly

growing storage demands, and they should provide efficient distribution of the stored content [2]. Two

examples of distributed storage systems are OpenStack’s Swift
1
 and Gluster

2
.

In this report we evaluate the performance of three distributed storage systems: Compuverde,

OpenStack’s Swift, and Gluster. Openstack’s Swift and Gluster are both open-source distributed

storage systems that are available for downloading and testing.

1
 http://openstack.org/

2
 http://www.gluster.org/

mailto:Sogand.Shirinbab@bth.se
mailto:Lars.Lundberg@bth.se
mailto:David.Erman@bth.se
http://openstack.org/
http://www.gluster.org/

2

2. Background

In a distributed storage system, data redundancy is usually introduced by spreading multiple replicas

of data over a number of storage nodes in order to guarantee that stored data is available even when

some storage nodes are unavailable. Some distributed storage systems use Distributed Hash Tables

(DHTs) for mapping data to physical servers. Two examples of systems that use DHTs are Gluster and

OpenStack’s Swift [22].

In distributed storage systems, the most common interfaces are Web Service APIs (Application

Programming Interface) like Internet Small Computer System Interface (iSCSI) [25]; REpresentational

State Transfer (REST)-based [23, 24] and Simple Object Access Protocol (SOAP)-based [27]. iSCSI

is an end-to-end protocol that transport I/O storage blocks (fixed-size) over IP networks and uses

indexes to address data. SOAP is a simple XML-based protocol to let applications exchange

information over HTTP. REST is a HTTP-based architectural style to build networked applications

that allows access to stored objects by an Object Identifier (OID) (see Figure 1), i.e., no file or

directory structures are supported [4]. We will refer to object-based storage system as unstructured

storage systems.

Figure 1: Object-Based Disk

There are other file storage access methods like Network File System (NFS) and Common Internet

File System (CIFS) which are used for accessing storage on a private network or LAN and Web-based

Distributed Authoring and Versioning (WebDAV) which is based on HTTP. These APIs are file-based

(variable-size) and use a path to identify the data; we denote these as structured storage systems. The

architecture of structured storage systems is similar to Network Attached Storage (NAS) which

provide file system functionality (see Figure 2), i.e., structured storage systems support variable file

and directory structures [3, 21].

Figure 2: Structured Storage System Architecture

3

The most well-known distributed storage systems are Amplistor [5, 30], Caringo’s CAStor [6, 31],

Ceph [7], Cleversafe
3
 , Compuverde

4
 , EMC Atmos [8], Gluster [9], Google File System [10], Hadoop

[11, 20], Lustre [12], OpenStack’s Swift [19], Panasas [13], Scality
5
 and Sheepdog

6
. Some of the

distributed file systems could be used by other applications, i.e., BigTable is a distributed storage for

structured data and it uses GFS to store log and data files [36].

As shown in Table 1 AmpliStor, CAStor, Ceph, Cleversafe and Scality are all unstructured distributed

storage systems. Amplistor is designed to work with HTTP/REST. Just as in Amplistor, CAStor’s

Simple Content Storage Protocol (SCSP) is based on HTTP using a RESTful architecture [34]. Ceph

provides an S3-compatible REST interface that allows applications to work with Amazon’s S3 service.

Unlike the above unstructured distributed storage systems, Cleversafe provides an iSCSI device

interface, which enables users to transparently store and retrieve files as if they were using a local hard

drive.

EMC Atmos is a structured distributed storage system that provides CIFS and NFS interfaces, as well

as web standard interfaces such as SOAP and REST. Other distributed file systems such as Google

File System, Hadoop Distributed File System (HDFS), Lustre and Panasas provide a standard POSIX

API. Sheepdog is the only distributed storage system which is based on Linux QEMU/KVM and is

used for virtual machines. The distributed storage systems use either Striping, Multicast or Distributed

Hash Tables (DHTs).

Some of the distributed file systems are also used for computing purposes, e.g., the Hadoop

Distributed File System (HDFS) which is designed based on the Data Intensive Scalable Computing

(DISC) architecture in order to distribute storage and computation across many servers. HDFS stores

file system metadata and application data separately and users can reference files and directories by

paths in the namespace (a HTTP browser can be used to browse the files of an HDFS instance) [35].

Lustre is an object-based file system used mainly for computing purposes. The Lustre architecture is

designed for High Performance Computing (HPC) and is composed of three components: Metadata

Servers (MDSs), Object Storage Servers (OSSs) and Clients. It uses striping to distribute data across a

certain number of objects. In addition to Hadoop and Lustre, Panasas is also used for computing

purposes and similar to Lustre, it is designed for HPC. It provides parallel and redundant access to

object storage devices (OSDs), per-file RAID, distributed metadata management, consistent client

caching, file locking services, and internal cluster management.

Scality uses a ring storage system which is based upon a Distributed Hashing Mechanism with

transactional support and failover capability for each storage node. The Sheepdog architecture is fully

symmetric and there is no central node such as a meta-data server (Sheepdog uses the Corosync cluster

engine [32] to avoid metadata servers). Sheepdog provides an object (variable-sized) storage and

assigned a global unique id to each object. In Sheepdog’s object storage, target nodes calculated based

on consistent hashing algorithm which is a schema that provides hash table functionality and each

object replicated to 3 nodes to avoid data lost [33].

The remaining distributed storage systems in Table 1 are Compuverde, Gluster and OpenStack’s

Swift. We could port these three systems to the same hardware platform (see Section 3), thus making

it possible to compare their performance (see sections 4 and 5). In subsections 2.1, 2.2, and 2.3, we

discuss these three systems in detail.

3
 http://www.cleversafe.com/

4
 http://compuverde.com/

5
 http://www.scality.com/

6
 http://www.osrg.net/sheepdog/

http://www.cleversafe.com/
http://compuverde.com/
http://www.scality.com/
http://www.osrg.net/sheepdog/

4

INTERFACE SOLUTION METADATA

Unstructured Structured

D
H

T

M
u

lticast

S
trip

in
g

C
en

tralized

D
istrib

u
ted

Web Service

APIs (REST,

SOAP)

Block-

based APIs

(iSCSI)

File-based

APIs

(CIFS,

NFS)

Other APIs

(WebDAV,

FTP,

Proprietary

API)

AmpliStor X - - - - - X X

Caringo’s

CAStor
X - X - - X - X -

Ceph X - - - - - X - X

Cleversafe - X - - - - X X -

Compuverde X - X X - X - - X

EMC Atmos X - X - - - X - X

Gluster - - X X X - X - -

Google File

System

(GFS)

X - X - - - X X -

Hadoop - - X - - - X X -

Lustre - - X - - - X X -

OpenStack’s

Swift
X - - - X - - - X

Panasas - - X - - - X - X

Scality X - - - X - - - X

SheepDog - X - - X - - - X

Table 1: Overview of different distributed storage systems

2.1. Compuverde

Compuverde has no single point of failure, and no separate metadata or metadata servers. Compuverde

uses its own proprietary caching mechanism (SSD Caching that employs Write-back policy) [26] in

the storage nodes (see Figure 3). The solution utilizes multicasting, and the supports geographical

dispersion, heartbeat monitoring, versioning support, self-healing and self-configuring. Compuverde

supports a flat 128 bit addresses space (for unstructured storage) and NFS/CIFS (for structured

storage). The system supports Linux and Windows. Compuverde’s storage solution consists of two

parts: The first part is unstructured and it contains all storage nodes (clusters). The other part is the

structured part of the storage solution. This part contains gateways (this corresponds to what

OpenStack calls proxy servers) to communicate with storage nodes. The communication is based on

TCP unicast and UDP multicast messages. Structured data storage is achieved by storing information

about the structure in envelopes. An envelope is an unstructured file that is stored on the storage nodes

and contains information about other envelopes and other files. The storage cluster provides

mechanisms for maintaining scalability and availability of the structured data by replicating the

envelopes a (configurable) number of times within the cluster as well as providing access to them by

the use of IP-multicast technology.

The communication between the structured and the unstructured layers starts with an IP-multicast of a

key from the gateway; this key identifies the requested envelope. Then all nodes that have the

requested envelope reply with information about that envelope and what other nodes contain the

requested envelope with the current execution load on the storage node. The gateway collects this

5

information and waits until it has received answers from more than 50% of the listed storage nodes

that contains the identifier before it makes a decision on which one to select for retrieval of the file
7
.

Figure 3: Compuverde System Overview

2.2. Gluster

Gluster is a structured distributed storage system. Storage servers in Gluster support both NFS and

CIFS. Gluster does not provide a client side cache in the default configuration [28]. Gluster

recommends hardware RAID. Software RAID works, but there are performance issues with this

approach. Gluster only provides redundancy at the server level, not at the individual disk level. For

data availability and integrity reasons Gluster recommends RAID 6 or RAID 5 for general use cases.

For high-performance computing applications, RAID 10 is recommended. Distribution over mirrors

(RAID 10) is one common way to implement Gluster (see Figure 4). In this scenario, each storage

server is replicated to another storage server using synchronous writes. In this strategy, failure of a

single storage server is transparent, and read operations are spread across both members of the mirror.

Figure 4: Gluster Distribute Over Mirrors (RAID 10)

7
 http://ilt.se/

http://ilt.se/

6

Figure 5 shows the Elastic Hash Algorithm (EHA) used by Gluster. EHA determines where the data

are stored and is a key to the ability to function without metadata. A pathname/filename is run through

the hashing algorithm. After that, the file is placed on the selected storage. There are no metadata in

Gluster. When accessing the file, the Gluster file system uses load balancing to access replicated

instances. Gluster offers automatic self-healing [9, 14].

Figure 5: Gluster’s Elastic Hash Algorithm (EHA)

2.3. OpenStack’s Swift

OpenStack’s Swift is an unstructured distributed storage system that is developed in the Python

programming language and supports Get/Put/Delete methods in the same way as all other distributed

storage systems which use the HTTP protocol. These methods can be used over the REST API, while

containers (folders) and objects (files) are available via an HTTP API. In OpenStack’s Swift, a number

of “zones” are organized in a logical ring which represents a mapping between the names of entities

stored on disk and their physical location. Swift is configurable in terms of how many copies (called

“replicas”) are written, as well as how many zones that are used. Swift tries to balance the writing of

objects to storage servers so that the write and read load is distributed. The mapping of objects to

zones is done using a hash function. Swift does not do any caching of actual object data but Swift-

proxy can optionally work with a cache (Memcached
8
) to reduce authentication, container, and

account calls [29]. In Swift, there are separate rings for accounts, containers, and objects. When other

components need to perform any operation on an object, container, or account, they need to interact

with the appropriate ring to determine its location in the cluster. OpenStack’s Swift’s ring is used by

the proxy server and several background processes (like replication), Swift’s ring is also responsible

for determining which devices are used for handoff in failure scenarios [15, 16, 17, 18, 19].

OpenStack’s Swift divides the storage space into partitions. In the case that we will study, 18 bits of

the GUID is used to decide on which partition a certain file should be stored. This means that there are

2
18

 = 262 144 partitions in this case. These partitions are divided into 6 zones. Zone 0 is mapped to

storage nodes 0 to 3, zone 1 is mapped storage nodes 4 to 7, and zone 5 is mapped to storage nodes 20

to 23. Storage nodes 0 to 7 are handled by one switch, nodes 8 to 15 by one switch and nodes 16 to 23

by one switch (see Figure6). There are 24*16 = 384 disks in the system and the 262 144 partitions are

8
 Memcached is a distributed memory object caching system

7

spread out with 682 or 683 partitions on each disk (262144/384 = 682.666…). The 18 bits from the

GUID will decide a partition and thus also a disk and a storage node for a file. If a file is stored on

partition X, the two extra copies of the file (there are three copies of each file) are stored on partitions

(X + 87 381) mod 262 144, and (X + 2 * 87 381) mod 262 144 (262 144 / 3 = 87 381.333…).

Figure 6: Swift Replicas and Zones

3. Experimental Setup

3.1. Test Configurations

Four different storage system configurations have been evaluated:

1. Compuverde Unstructured

2. Compuverde Structured

3. OpenStack’s Swift (an unstructured storage system)

4. Gluster (a structured storage system)

The entire measurement takes place in two “Load Generating Clients” (see Figure 7), by running the

same code for each configuration; the only part of the code that has been changed was the interface.

The clients work synchronously and report the result to the “Master Controlling the Clients”, which is

responsible for monitoring the throughput.

The same hardware is used in each configuration. The storage system consists of 24 storage nodes,

each containing sixteen 2 TB disks, i.e., a total of 32 TB for each node and 768 TB storage for all 24

nodes. With the exception of configuration 1 (Compuverde Unstructured), all accesses to the storage

system are routed through four proxy (gateway) servers. In configuration 1 the clients communicate

directly with the storage system.

Each proxy server has an Intel Quad processor, 16 GB RAM, and two 10 Gbit network cards. Each

storage node has an Intel Atom D525 processor, 4 GB RAM, and a 1 Gbit network card. All storage

nodes and proxy servers run the Linux operating system. There are four switches that are used to

transmit data from four proxy servers and two load generating clients to the 24 storage nodes. The

central switch is a Dell 8024F and the other three switches are Dell 7048Rs. Four Proxy Servers are

connected to the Central Switch via four 2*10 Gbit Fibers. Two Load Generating Clients connected to

a Central Switch via two 10 Gbit Fibers and Central switch connected to other three stand alone

switches via three 4*10 Gbit Fibers.

8

The physical structure of the system is the same for all four cases and all measurements have been

done in Load Generating Clients (see Figure 7). In configuration 1, the proxy servers are not used.

Figure 7: The physical structure of the test configurations.

The four test configurations will now be described.

3.1.1. Compuverde Unstructured

In this configuration three copies of each file are created. The proxy servers are not used, and the load

generating clients communicate directly with the storage nodes.

3.1.2. Compuverde Structured

In this case two copies of each file are created. The reason for this is that this case will be compared

with Gluster, and Gluster only supports two copies of each file. The two load generating clients

communicate with two proxy servers each. The communication protocol between the load generating

clients and the proxy servers is NFS/CIFS.

9

3.1.3. OpenStack’s Swift

OpenStack’s Swift has three copies of each file, and the two load generating clients communicate with

two proxy server each.

3.1.4. Gluster

Gluster dedicates a volume to the lock file. In Gluster the storage nodes are arranged in pairs to obtain

fault tolerance. This means that there are only two copies of each file. The communication protocol

between the load generating clients and the proxy servers is NFS/CIFS.

3.2. Test Cases

Two kinds of tests are considered in this study: performance tests and recovery tests.

3.2.1. Performance Tests

In these test cases the read, write and delete performance are measured:

There are four test cases for each test configuration:

1. We measure write performance. In these tests, a number of clients (implemented as full speed

threads, i.e., as threads that issue write requests in a tight loop without any delay and with only

minimal processing done between each request) running on two servers (see Figure 7) create

files of size 0 KB, 10 KB, 100 KB, 1 MB and 10 MB, respectively. Writing 0 KB corresponds

to creating a file and will be reported separately. We vary the number of clients from 2 to 256,

using the steps 2, 4, 8, 16, 32, 64, 128, and 256 clients. A write operation is a combination of

Open, Write and Close. We measure MB/s and operations/s.

2. We measure read performance. In these tests, a number of clients (implemented as full speed

threads) running on two servers (see Figure 7) read files of size 0 KB, 10 KB, 100 KB, 1 MB

and 10 MB, respectively. Reading 0 KB corresponds to opening a file and will be reported

separately. We vary the number of clients from 2 to 256, using the steps 2, 4, 8, 16, 32, 64, 128,

and 256 clients. A read operation is a combination of Open, Read and Close. We measure

MB/s and operations/s.

3. We measure delete performance. In these tests, a number of clients (implemented as full speed

threads) running on two servers (see Figure 7) delete files of size 10 KB, 100 KB, 1 MB and 10

MB, respectively. We vary the number of clients from 2 to 256, using the steps 2, 4, 8, 16, 32,

64, 128, and 256 clients. We measure operations/s.

4. For the structured storage case, we use the SPECsfs2008 performance evaluation tool from the

Standard Performance Evaluation Corporation
9
. The tool can be configured to issue a number

of I/O Operations per Second (IOPS), and it then measures the actual achieved throughput in

terms of IOPS and the average response time.

9
 http://www.spec.org/sfs2008

http://www.spec.org/sfs2008

10

During the read/write/delete performance tests for small file sizes (0KB and 10KB), test has been done

by writing/reading/deleting 1,000,000 files to/from the storage nodes, but for larger file sizes (100KB,

1 MB and 10 MB) the test has been continued by writing/reading/deleting files (between 50,000 and

100,000 files) until the results become stable and then the number of operations per second and MB/s

were measured.

For Gluster and OpenStack’s Swift no caching is used. In order to get fair results, the test has been

done for Compuverde for two cases: caching and No Caching (NC) (Gluster and OpenStack do not

support caching). We just limited the caching and No Caching tests to only 1 MB files. We have

recorded the CPU utilization for the storage nodes (S CPU %) and for proxy servers (P CPU %) during

the tests. Compuverde Unstructured does not use any proxy servers, so there are no recordings of

proxy servers CPU usage for this case.

3.2.2. Recovery Tests

In these tests we measure how long it takes for the storage system to reconfigure itself after a node

failure. We will measure recovery performance by reformatting one storage node. When a storage

node is reformatted the file copies stored on that node are lost. We measure the time until the system

has created new copies corresponding to the copies that were lost.

4. Read and Write Performance

In this section we will look at the read and write performance of each of the four configurations. In

Section 5 we will compare the different configurations with each other. The exact values that

correspond to the figures in sections 4 and 5 can be found in Appendix A.

4.1. Compuverde Unstructured

Figures 8(a) and 8(b) show that the throughput is low when number of clients and the size of the files

are small; the throughput increases when number of clients and the size of the files increase. It can also

be noted that the performance in case of using cache in the storage nodes, e.g., 1 MB files, does not

differ so much compared to the case that using no cache, i.e., 1 MB (NC).

 (a) Write Performance Test Results (Compuverde Unstructured)

11

(b) Read Performance Test Results (Compuverde Unstructured)

Figure 8: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis

denotes the number of clients that are writing/reading simultaneously. Figure (a) shows the write

performance results, and Figure (b) shows the read performance results for Compuverde Unstructured

according to Appendix A, part 1, Write/Read test results.

4.2. Compuverde Structured

Figures 9(a) and 9(b) show that the data transfer rate is low when the number of clients and the size of

the files are small and it increases when number of clients and size of files increase. It can also be

noted that the performance difference between using caching in the storage nodes, e.g., 1 MB files,

and using no caching, i.e., 1 MB (NC), is approximately a factor of 1.5 when writing; there is no

significant difference between caching and no caching when reading.

(a) Write Performance Test (Compuverde Structured)

12

(b) Read Performance Test (Compuverde Structured)

Figure 9: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis

denotes the number of clients that are writing/reading simultaneously. Figure (a) shows the write

performance results, and Figure (b) shows the read performance results for Compuverde Structured

according to Appendix A, part 2, Write/Read test results.

4.3. OpenStack’s Swift

Figures 10(a) and 10(b) show that in cases of writing/reading the files of large size (10MB), the data

transfer rate increases rapidly when the number of the clients increases. While in case of writing files

with size of 1MB and less the curve is quite stable.

(a) Write Performance Test (OpenStack)

13

(b) Read Performance Test (OpenStack)

Figure 10: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis

denotes the number of clients that are writing/reading simultaneously. Figure (a) shows the write

performance results, and Figure (b) shows the read performance results for OpenStack according to

Appendix A, part 3, Write/Read test results.

4.4. Gluster

Figures 11(a) and 11(b) show that the data transfer rate for large files increases when the number of

clients increases. However, for smaller files the transfer rate does not increase so much when the

number of clients increases. In fact, when the number of clients exceeds a certain values the transfer

rate starts to decrease. The reason for this is probably that Gluster contains contention bottlenecks

internally. The tables in part 4 of Appendix A show that the utilization for the storage nodes never

exceeds 50% for Gluster. For the other test configurations we get much higher utilization values. This

is an indication that there are internal performance bottlenecks in Gluster.

(a) Write Performance Test (Gluster)

14

(b) Read Performance Test (Gluster)

Figure 11: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis

denotes the number of clients that are writing/reading simultaneously. Figure (a) shows the write

performance results, and Figure (b) shows the read performance results for Gluster according to

Appendix A, part 4, Write/Read test results.

5. Comparing the Distributed Storage Systems

We have evaluated two unstructured storage systems (OpenStack’s Swift and Compuverde

Unstructured) and two structured storage systems (Gluster and Compuverde Structured). In Section

5.1 we compare the performance of the two unstructured systems with each other and in Section 5.2

we compare the performance of the two structured systems with each other. In Section 5.3 we compare

the time to recreate all the file copies in a storage system in case one of the storage nodes fails.

5.1. Compuverde Unstructured vs. OpenStack’s Swift

We talked to several online storage provider companies and it turned out that most of their users store

small files with an average size of 1 MB. Therefore, the performance tests (Write/Read/Delete) are

compared only for 1 MB. Figure 12(a) shows that, the throughput of Compuverde Unstructured for

256 clients (both when using caching and no caching (NC)) was roughly 800 MB/s, while for

OpenStack’s Swift it was around 200 MB/s. Figure 12(b) shows that, the throughput of Compuverde

Unstructured for 256 clients (both when using caching and no caching (NC)) was roughly

1600MB/sec to 1900 MB/sec, while for OpenStack’s Swift it was around 600 MB/s. The create files

performance test has been done by creating (writing) 0 KB files. The tables in Appendix A that

correspond to Figure 12(c) show that the performance of Compuverde Unstructured for 256 clients

was 10118 operations/s in case of caching and 6500 operations/s in case of no cache (NC); for

OpenStack’s Swift it was 600 operations/s. The open files performance test has been done by opening

(reading) 0 KB files. Performance test results listed in the tables in Appendix A that correspond to

Figure 12(d) show that the performance of Compuverde Unstructured for 256 clients was 11153

operations/s in case of caching and 12826 operations/s in case of no cache (NC); for OpenStack’s

Swift it was 4500 operations/s. The delete files performance test has been done by deleting files with a

15

size of 1 MB. The tables in Appendix A that correspond to Figure 12(e) show that the performance of

Compuverde Unstructured for 256 clients was 9956 operations/s in case of caching and 8145

operations/s in case of no cache (NC); for OpenStack’s Swift it was 498 operations/s.

(a) Write performance Compuverde Unstructured vs. OpenStack’s Swift

(b) Read performance Compuverde Unstructured vs. OpenStack’s Swift

(c) Create files performance Compuverde Unstructured vs. OpenStack’s Swift

16

(d) Open files performance Compuverde Unstructured vs. OpenStack’s Swift

(e) Delete file performance Compuverde Unstructured vs. OpenStack’s Swift

Figure 12: Figure (a) shows the comparison between write performance of Compuverde Unstructured

and OpenStack’s Swift for files of 1 MB. Figure (b) shows the comparison between read performance

of Compuverde Unstructured and OpenStack’s Swift for files of 1 MB. Figure (c) shows the

comparison between create file performance of Compuverde Unstructured and OpenStack’s Swift.

Figure (d) shows the comparison between open file performance of Compuverde Unstructured and

OpenStack’s Swift. Figure (e) shows the comparison between delete performance of Compuverde

Unstructured and OpenStack’s Swift for files of 1 MB. All values are provided in Appendix A.

5.2. Compuverde Structured vs. Gluster

The write/read/delete performance tests have been done only for 1 MB according to the conducted

interviews with the on-line storage providers. The tables in Appendix A that correspond to Figure

13(a) show that the throughput of Compuverde Structured for 256 clients was 655 MB/s in case of

caching and 450 MB/s in case of no cache (NC); for Gluster it was 164 MB/s. The tables in Appendix

A that correspond to Figure 13(b) show that the throughput of Compuverde Structured for 256 clients

17

was 780 MB/s in case of caching and 821 MB/s in case of no cache (NC); for Gluster it was 270

MB/s. The create files performance test has been done by creating (writing) 0 KB files. The tables in

Appendix A that correspond to Figure 13(c) show that the performance for Compuverde Structured for

256 clients was 7370 operations/s in case of caching and 1239 operations/s in case of no cache (NC);

for Gluster it was 241 operations/s. The open files performance test has been done opening (reading)

files of 0 KB size. The tables in Appendix A that correspond to Figure 13(d) show that the

performance for Compuverde Structured for 256 clients was 11116 operations/s in case of caching and

12458 operations/s in case of no cache (NC); for Gluster it was 1029 operations/s. The delete files

performance test has been done by deleting files of 1MB size. The tables in Appendix A that

correspond to Figure 13(e) show that the performance for Compuverde Structured for 256 clients was

3548 operations/s in case of caching and 3367 operations/s in case of no cache (NC); for Gluster it was

441 operations/s.

(a) Write performance Compuverde Structured vs. Gluster

(b) Read performance Compuverde Structured vs. Gluster

18

(c) Create files performance Compuverde Structured vs. Gluster

(d) Open files performance Compuverde Structured vs. Gluster

(e) Delete files performance Compuverde Structured vs. Gluster

Figure 13: Figure (a) shows the comparison between write performance of Compuverde Structured

and Gluster for files of 1 MB. Figure (b) shows the comparison between read performance of

Compuverde Structured and Gluster for files of 1MB. Figure (c) shows the comparison between create

file performance of Compuverde Structured and Gluster. Figure (d) shows the comparison between

open file performance of Compuverde Structured and Gluster. Figure (e) shows the comparison

between delete performance of Compuverde Structured and Gluster for files of 1 MB. All values are

provided in Appendix A.

19

The test results using the Spec2008sfs tool are shown in Figures 14(a) and 14(b). Figure 14(a) shows

that both Compuverde Structured and Gluster meet the number of requested IOPS for the first two

cases, i.e., for 3000 IOPS and 4000 IOPS. However, when the requested numbers of IOPS increased to

5000 and above, Compuverde Structured delivered a number of IOPS relatively near to the requested

one, while Gluster delivers a number of IOPS that is significantly smaller than the requested number

of IOPS. Figure 14(b) shows the result of response time test that has been obtained using the

Spec2008sfs performance evaluation tool. Compuverde’s response time is in the range of 3.5 ms to 17

ms, while for Gluster the response time is between 10.1 ms and 33.3 ms.

(a) Performance evaluation Compuverde Structured vs. Gluster

(b) Performance Evaluation Compuverde Structured vs. Gluster

Figure 14: Figure (a) and (b) show the comparison between the performance of Compuverde

Structured and Gluster by using the Spec2008sfs tool.

20

5.3. Recovery Test

We did the recovery test for all four different configurations (Compuverde Unstructured, Compuverde

Structured, OpenStack’s Swift and Gluster). The same recovery test has been run twice for each

configuration.

Compuverde Unstructured 19 minutes (1140 s) 18 minutes (1080 s)

Compuverde Structured 22 minutes (1320 s) 22 minutes (1320 s)

OpenStack 9 hours 27 minutes (34020 s) 10 hours 16 minutes (36960 s)

Gluster 18 hours 27 minutes (66420 s) 18 hours 29 minutes (66540 s)

Table 2: Recovery Test Results

As been shown in Table 2, the recovery time for Compuverde Unstructured was 18-19 minutes and the

recovery time for OpenStack’s Swift was 9 hours and 27 minutes. This means that the recovery time

for Compuverde Unstructured is almost 30 times faster than that of OpenStack’s Swift. One reason

could be that OpenStack is written in Python language which is considered being a programming

language that does not perform so fast. The other reason is that OpenStack uses the rsync
10

 command

that is responsible for maintaining object replicas, consistency of objects and perform update

operations. It seems that using rsync command introduces a significant overhead which causes a

performance decrease. The situation is similar for Compuverde Structured with a recovery time of 22

minutes compared to Gluster with recovery time of 18 hours and 27 minutes. Compuverde Structured

recovery time is 50 times faster than Gluster recovery time. Gluster also uses rsync for replication, and

also in this case we believe that this is one reason for the performance reduction. Another reason for

the low performance of Gluster compare to Compuverde Structured is the architecture that used by

Gluster for replication. In Gluster the proxy servers are doing the self-healing while in Compuverde

Structured storage nodes are performing the self-healing by themselves without involving any proxy

servers which results in many-to-many replication pattern. Consequently, it seems that it is much more

efficient to build the synchronization protocols from scratch than to base them on standard software

applications such as rsync (which is used in both OpenStack and Gluster). Also, the centralized

recovery approach in Gluster (i.e., using the proxy servers) does not seem to be as efficient as the

distributed approach (i.e., using the storage nodes themselves) in Compuverde. The use of the Phyton

programming language is probably a contributing factor to the relatively low performance of

OpenStack.

6. Discussion

Compared to conventional centralized storage systems, a distributed storage system allows for more

flexible scaling in several dimensions. It allows for not only increased performance and redundancy,

but also affords improved energy efficiency and lowering the carbon footprint of the system. For

instance, by removing the need for a central, very high-powered storage controller, replacing it with

low-cost and low wattage storage nodes, such as the ones used in the experiments presented in this

paper, the power used by the system can be decreased.

10

 rsync is a file transfer program for Unix-like systems.

21

Furthermore, by decoupling the intelligence for providing the storage service, and placing it in the

storage nodes, not only is redundancy improved, but it also allows for exchanging the individual nodes

for nodes with a lower carbon footprint as technology advances. This makes the system more flexible

with respect to the hardware used to build the system, and makes it possible to take immediate

advantage of improvements in sustainable technologies. One example would be exchanging

conventional hard drive for solid state drives as prices decrease. Another advantage of moving the

system logic to the storage nodes is that this allows system performance to scale linearly with the

number of nodes. This is particularly apparent when employing multicast.

7. Conclusions

The performance evaluations of the unstructured storage systems show that the open, read, write, and

delete performance of Compuverde Unstructured is significantly higher than for OpenStack’s Swift.

The performance advantage of Compuverde Unstructured is particularly clear when the load is high,

i.e., when the number of clients that issue simultaneous accesses to the system is high. The evaluations

show that the performance advantage of Compuverde Unstructured is not a result of caching in the

storage nodes, i.e., the performance difference using cache and no cache (NC) is relatively small. One

possible explanation to the low performance of OpenStack’s Swift is that the OpenStack system is

written in the Python programming language, which is not a compiled language and is slow compared

to C/C++. The other explanation for OpenStack’s low performance could be the proxy servers. In the

OpenStack architecture, data has to flow through proxy servers, which is a performance bottleneck;

Compuverde Unstructured does not use any proxy servers and clients are connected directly to the

storage nodes.

The performance evaluations of the structured storage systems show that the open, read, write, and

delete performance of Compuverde Structured is significantly higher than for Gluster. The

performance advantage of Compuverde Structured is particularly clear when the load is high, i.e.,

when the number of clients that issue simultaneous access to the system is high. The performance in

terms of throughput goes down for Gluster when the load increases. This behavior indicates that there

are internal bottlenecks (e.g., file level locking) and contention problems in Gluster. The evaluation

using the Spec2008sfs tool show that same behavior, i.e., the performance of Compuverde Structured,

in terms of throughput and response times, is better than that of Gluster and Gluster suffers from

contention problems when the load increases. Compuverde Structured has some contention problems

when the load increases, but not to the same extent as Gluster. The evaluations show that the

performance advantage of Compuverde Structured is not a result of caching in the storage nodes. In

some cases caching in the storage nodes adds a significant advantage, but the performance of

Compuverde Structured is better than Gluster also without caching in the storage nodes.

The recovery test show that Compuverde recovers from a storage node failure much faster than

OpenStack’s Swift and Gluster. One reason for Gluster to perform slower than Compuverde Structure

could be its architecture which involves proxy servers in self healing while Compuverde uses the

many-to-many replication pattern and only involves storage nodes in self healing. A major factor for

OpenStack’s Swift to perform slower than Compuverde Unstructured could be the Python

programming language. Another reason could be that Compuverde has built its own recovery protocol

from scratch, whereas OpenStack and Gluster base their protocols on existing applications (e.g.,

rsync).

Finally, our study provides quantitative performance values measured on a large real world distributed

storage system. Such values can be used for comparisons by other researchers and practitioners.

22

References

1. IDC (International Data Corporation), (2011, March 04). ”Worldwide Disk Storage Systems Finishes 2010

with Double-Digit Growth on Strong Fourth Quarter Results, According to IDC” [Online]. Available:

http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22723811§ionId=null&elementId=nu

ll&pageType=SYNOPSIS

2. Liuis Pamies I Juarez, “On the Design and Optimization of Heterogeneous Distributed Storage Systems”,

University Rovira in Virgili, Department of Engineering Information in Mathematic, PHD thesis

dissertation, (2011, July 19).

3. Garth A. Gibson, Rodney Van Meter, “Network Attached Storage Architecture”, Magazine,

Communications of the ACM, New York, (2000, November).

4. Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, Julian Satran,” Object storage: The future building

block for storage systems”, published in: in 2nd International IEEE Symposium on Mass Storage Systems

and Technologies, Sardinia,2005.

5. Santa Clara, “Amplidata Demonstrates Highly Scalable and Reliable Storage Solutions for Massive Cloud

Deployments at Intel Development Forum”, Article at PRNewswire, Calif. (2011, September 16).

6. Caringo CAStor (2011, September 15). ”Castor the Market Leading Object Storage Engine” [Online].

Available: http://www.caringo.com/downloads/datasheets/Caringo-CAStor-Object-Storage.pdf

7. Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, Carlos Maltzahn, “Ceph: A Scalable,

High-Performance Distributed File System”, University of California, Santa Cruz, Appeared in Proceeding

of the 7th Conference on Operating Systems Design and Implementation (OSDI’06), (2006, November).

8. EMC Atmos, “EMC Atmos Cloud Optimize Storage for Web Services” Whitepaper, (2010, April).

9. Gluster Inc. “An Introduction to Gluster Architecture” Whitepaper,(2011).

10. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. ”The Google File System”, Appeared in 19th

ACM Symposium on Operating Systems Principles, Lake George, NY (2006, October).

11. Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, “The Hadoop Distributed File

System”, Yahoo! Sunnyvale, California USA, 2010.

12. Feiyi Wang, Sarp Oral, Galen Shipman, “Understanding Lustre FileSystem Internals”, OAK RIDGE, 2009.

13. Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small, Jim Zelenka, Bin

Zhou. “Scalable Performance of The Panasas Parallel File System”, FAST’08 proceedings of the 6th

USENIX Conference on File and Storage Technologies, USENIX Assosiation Berkeley, CA, USA, 2008.

14. Drew Robb, “Gluster Brings Open Source to Unstructured Data”, Storage Technology Features Article

Published (2010, August 12).

15. OpenStack, “OpenStack Compute Admin Manual”,Manual, (Nov14,2011).

16. Joe Arnold, Dr. Jinkyung Hwang, Dr. Jaesuk Ahn, “Commercialization of OpenStack: Object Storage”,

OpenStack conference commercialization of object storage, Korea (2010, April 26).

17. Pepple Ken,”Deploying OpenStack”. O’Reilly Media. ISBN 1449311059, (August 2011).

18. OpenStack, “OpenStack Object Storage: An Overview” white paper, 2010.

19. OpenStack, LLC, “Welcome to Swift’s documentation!”, Swift v1.4.8-dev documentation,2011.

20. Shunsuke Mikami, Kazuki Ohta, Osamu Tatebe, ”Using the Gfarm File System as a POSIX Compatible

Storage Platform for Hadoop MapReduce Applications”, Published in: GRID’11 Proceedings of the 2011

IEEE/ACM 12th International Conference on Grid Computing, IEEE Computer Society Washington, DC,

USA, 2011.

21. Ranjit Noronha, Lei Chai, Thomas Talpey, Dhabaleswar K.Panda,”Designing NFS with RDMA for

Security, Performance and Scalability”, Technical Report OSU-CISRC-6/07-TR47, The Ohio State

University, 2007.

22. Julian Dymcek, ”Survey of Distributed Hash Tables”, Lane Department of Computer Science and Electrical

Engineering, West Virginia University, Morgantown WV,2011.

23. Roy T.Fielding, Richard N. Taylor, “Principles design of the modern Web architecture”, published in

ICSE’00 Proceedings of the 22nd international conference on software engineering, ACM New York, NY,

USA, 2000.

24. Michael Jakl,”REST: Representational State Transfer”, University of Technology Vienna, 2008.

25. Wang, P., “IP SAN- from iSCSI to IP-addressable Ethernet disks” Appears in: Mass Storage Systems and

Technologies. Proceedings, 20th IEEE/11th NASA Goddard Conference, 2003.

26. Thanos Makatos, Yannis Klonatos, Manolis Marazkis, Michail D. Flouris, Angelos Bilas, “Using

transparent compression to improve SSD-based I/O Caches”,Published in EuroSys’10 Proceedings of the

5th European conference on Computer systems, ACM NewYork, NY, USA, 2010.

27. Curbera F., Duftler M., Khalaf R., Nagy W., Mukhi N., Weerawarana S. “Unraveling the Web services web:

an introduction to SOAP, WSDL, and UDDI”, published in Internet Computing, IEEE, NY, USA, 2002.

23

28. Ranjit Noronha, Dhabaleswar K. Panda “IMCa: High Performance Caching Front-end for GlusterFS on

InfiniBand” Network-Based Computing Laboratory, Computer Science and Engineering, The Ohio State

University, 2008.

29. OpenStack Object Storage Admin Manual, OpenStack, “Consideration and Tunning”, 2011.

30. Amplidata,“Amplistor: Unbreakable Object Storage for Petabyte-Scale Unstructured Data” Whitepaper,

2011, (April 13)

31. Caringo CAStor, “CAStor: The Market Leading Object Storage Engine” Product Brief, (2011, September

15)

32. Steven C. Dake, Christine Caulfield, Andrew Beekhof. “The Corosync Cluster Engine”, Proceedings of the

Linux Symposium, Ottawa, Ontrio, Canada, 2008 July 23.

33. George Parisis, “DHTbd: A Reliable Block-based storage system for High Performance clusters”,

Proceedings of the IEEE/ACM CCGRID, UK, 2011.

34. Roberto Lucchi, Michel Millot, “Resource Oriented Architecture and REST”, JRC Scientific and Technical

Reports, European Communities, Luxembourg, 2008.

35. Bin Fan, Wittawat Tantisiriroj, Garth Gibson, Lin Xiao, ”DiskReduce: Replication as a Prelude to Erasure

Coding in Data-Intensive Scalable Computing”, Parallel Data Laboratory, Carnegie Mellon University,

Pittsburgh, 2011.

36. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, R. E.

Gruber, “BigTable: A Distributed Storage System for Structured Data”, Journal: ACM Transactions on

Computer Systems (TOCS), New York, USA, June 2008.

24

APPENDIX A, MEASURED PERFORMANCE VALUES

1. COMPUVERDE (UNSTRUCTURED)

Write 0 KB 0 KB (NC) 10 KB 100 KB 1 MB 1 MB (NC) 10 MB
Clients / File size Op/s CPU % Op/s CPU % MB/s CPU % MB/s CPU % MB/s CPU % MB/s CPU % MB/s CPU %

2 1096 12 478 3 7 12 46 14 112 14 71 5 151 12

4 1965 24 890 5 12 24 80 23 186 20 101 8 239 23

8 3341 27 1296 8 20 36 128 27 292 25 167 12 361 25

16 4982 50 1916 13 30 70 195 50 419 35 278 23 491 37

32 6702 73 2866 18 29 90 260 75 556 54 444 27 611 48

64 8141 77 4146 21 51 95 291 73 682 72 592 49 723 60

128 9428 95 4944 30 66 97 356 74 767 76 753 58 808 73

256 10118 98 6500 55 80 98 469 77 833 89 838 72 851 75

Read 0 KB

0 KB (NC) 10 KB 100 KB 1 MB 1 MB (NC) 10 MB
Clients / File size Op/s CPU % Op/s CPU % MB/s CPU % MB/s CPU % MB/s CPU % MB/s CPU % MB/s CPU %

2 1057 9 1152 4 7 5 24 4 39 4 38 3 95 3

4 2210 15 2565 15 15 12 50 5 86 4 57 3 193 3

8 4327 25 5110 25 30 24 85 8 181 5 154 4 386 5

16 7901 46 10086 45 57 30 161 12 357 7 319 5 705 7

32 10709 53 12490 50 86 50 304 26 640 15 615 13 1087 15

64 11103 55 12761 50 100 60 450 46 1064 26 941 24 1554 24

128 11165 55 12792 53 101 68 700 73 1544 40 1546 28 1778 27

256 11153 56 12826 54 99 72 795 77 1913 50 1612 43 2239 28

25

Delete 1 MB

1 MB (NC)
Clients / File size Op/s CPU % Op/s CPU %

2 3078 53 2230 30

4 7076 62 3936 45

8 8092 70 5460 47

16 8495 73 6754 50

32 9636 74 7391 45

64 9822 74 7990 35

128 9840 73 8209 49

256 9956 73 8145 49

2. COMPUVERDE (STRUCTURED)

Write 0 KB 0 KB (NC) 10 KB 100 KB 1 MB 1 MB (NC) 10 MB

Clients /
File size

Op/s
S

CPU
%

P
CPU

%
MB/s

S
CPU

%

P
CPU

%
MB/s

S
CPU

%

P
CPU

%
MB/s

S
CPU

%

P
CPU

%

MB
/s

S
CPU

%

P
CPU

%

MB
/s

S
CPU

%

P
CPU

%

MB
/s

S
CPU

%

P
CPU

%

2 640 24 12 182 4 4 5 25 13 45

126 20 10 43 5 5 142

4 1266 38 19 313 7 5 10 46 18 87

222 26 16 100 11 10 238

8 2098 75 25 459 9 5 17 75 23 141

353 58 31 169 20 20 351

16 2650 100 32 576 15 8 24 95 34 204

488 80 52 229 26 25 492

32 4453 100 44 814 22 13 33 100 40 248

630 90 74 356 45 39 619

64 6276 99 58 1007 20 13 43 96 62 278

640 93 81 446 48 60 715

128 7048 96 63 1171 23 16 46 97 42 304

648 98 90 443 51 70 773

256 7370 97 71 1239 25 25 38 94 39 272

655 98 93 450 53 68 784

26

Read 0 KB 0 KB (NC) 10 KB 100 KB 1 MB 1 MB (NC) 10 MB

Clients /
File size

Op/s
S

CPU
%

P
CPU

%
MB/s

S
CPU

%

P
CPU

%

MB/
s

S
CPU

%

P
CPU

%

MB
/s

S
CPU

%

P
CPU

%

MB
/s

S
CPU

%

P
CPU

%

MB
/s

S
CPU

%

P
CPU

%
MB/s

S
CPU

%

P
CPU

%

2 779 5 7 786 4 6 5 4 9 31

37 3 12 38 3 19 75

4 1700 12 10 1769 11 10 11 6 15 48

73 4 26 61 4 22 154

8 3851 24 18 3985 24 19 16 11 39 87

146 4 46 147 5 45 304

16 7733 28 32 8189 30 34 40 25 54 154

295 6 75 310 6 72 574

32 10716 50 47 12359 49 53 61 35 90 205

523 13 90 550 12 92 957

64 11171 50 62 12859 50 57 93 54 96 294

794 17 98 837 23 98 1188

128 11172 51 72 12857 51 63 100 70 95 302

787 18 99 823 22 98 1250

256 11116 55 84 12458 50 61 55 68 82 241

780 20 99 821 23 99 1258

Spec2008sfs

Req IOPS IOPS Resp (ms)

2000

3000 3007 3,5

4000 4010 4,4

5000 4931 4,8

6000 5504 7,3

7000 5819 11,9

8000 5480 17

9000

Delete 1 MB 1 MB (NC)
Clients / File size Op/s S CPU % P CPU % Op/s S CPU % P CPU %

2 942

730

4 1892

1150

8 2503

1506

16 2647

1691

32 2725

2117

64 3142

2580

128 3641

2944

256 3548

3367

27

3. OPENSTACK

Write 0 KB 10 KB 100 KB 1 MB 10 MB
Clients / File size Op/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU %

2 67 35 34 35 op/s 29 8 3 30 4 18 49 12 40 29 6

4 115 38 10 1 38 8 6 33 7 23 49 12 76 29 19

8 190 41 14 1 42 11 10 35 11 39 53 12 129 31 22

16 292 43 18 1,9 43 15 16 46 16 68 80 26 207 56 28

32 375 46 26 2,6 47 23 23 49 23 124 87 27 314 62 41

64 467 74 35 3,5 54 30 33 55 23 162 85 25 429 87 74

128 528 87 44 3,9 60 37 38 86 23 202 84 47 521 95 81

256 600 82 50 4,2 60 60 46 76 44 233 92 60 578 96 92

Read 0 KB 10 KB 100 KB 1 MB 10 MB
Clients / File size Op/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU %

2 253 32 6 1,5 32 7 12 30 4 25 48 6 80 22 6

4 477 35 13 3,4 33 13 26 30 10 51 48 11 164 24 14

8 850 35 23 6,4 40 19 38 33 17 106 51 17 316 29 30

16 1703 38 42 14 42 47 66 38 35 212 62 38 565 35 55

32 2550 47 75 23 45 65 118 41 53 435 65 70 849 38 78

64 3332 70 28 24 39 30 215 53 82 589 67 90 901 48 93

128 4000 42 35 25 62 23 248 64 98 598 69 80 911 51 98

256 4500 43 95 30 45 40 267 69 99 600 86 100 953 55 99

28

Delete 1 MB
Clients / File size Op/s S CPU % P CPU %

2 27 51 3

4 54 52 3

8 103 54 6

16 170 56 15

32 280 56 17

64 347 65 22

128 450 87 22

256 498 89 28

4. GLUSTER

Write 0 KB 10 KB 100 KB 1 MB 10 MB
Clients / File size Op/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU %

2 65 7 12 1 6 17 6 6 9 34 6 9 63 5 10

4 120 12 17 1 10 17 11 11 18 64 13 19 130 12 20

8 233 19 28 2 44 44 17 18 35 107 18 42 217 24 45

16 323 31 42 3 30 49 21 19 46 144 22 44 304 30 52

32 377 35 39 3 40 42 24 24 38 168 24 48 387 42 56

64 330 35 38 3 30 29 22 34 32 179 24 50 434 43 59

128 290 40 33 3 32 29 20 22 34 186 35 51 458 41 69

256 241 45 33 3 35 37 22 37 39 164 31 44 462 41 67

29

Read 0 KB 10 KB 100 KB 1 MB 10 MB
Clients / File size Op/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU % MB/s S CPU % P CPU %

2 548 8 9 3 5 27 23 4 10 38 6 11 30 6 9

4 1151 14 20 6 9 11 44 8 11 45 8 18 53 12 20

8 1835 25 40 11 20 24 72 15 49 79 12 43 92 14 38

16 1945 36

17 33 62 126 24 68 129 24 58 143 18 46

32 2059 43 34 18 39 69 158 32 72 197 28 71 192 22 53

64 1431 28 21 14 39 68 147 35 80 250 36 77 239 24 55

128 1080 31 27 12 31 60 127 30 83 296 27 78 284 28 64

256 1029 31 26 13 36 59 117 45 62 270 40 80 300 32 66

Delete 1 MB
Clients / File size Op/s S CPU % P CPU %

2 383 8 9

4 688 12 10

8 1200 23 37

16 1359 34 39

32 1400 35 42

64 970 16 34

128 581 38 41

256 441 25 28

Spec2008sfs
Req IOPS IOPS Resp (ms)

2000

3000 3008 10,1

4000 4017 11

5000 3922 23,9

6000 3821 25,9

7000 4019 24,6

8000 2977 33,3

9000

