Bit-Rot Detection for GlusterFS
“Resilience to silent data corruption”
An initial design draft for Bit-Rot has been submitted upstream[1]. We would try to take the work forward with some minor changes.
This document explains the approach and the effort (phases) involved in implementing bit-rot detection in GlusterFS. For the uninformed, bit-rot detection is a technique used to identify an “insidious” type of disk error where data is silently corrupted with no indication from the disk to the storage software layer that an error has occurred. Other type of disk errors such as “latent sector errors” which are caused due to imperfections in storage media, mechanical failures (due to moving parts), media scratches can be identified by the drive either by it's inability to read/write to such sectors or by Error Correction Code (ECC).

Silent data corruption pose a challange as they cannot be detected and recovered (repaired) by the disk drive itself. Schemes like RAID would also be unable to detect these problems as most RAID do not check parity (RAID5, RAID6) on every read. Paper[2] talks about analysis done on storage production systems over a period of ~40 months and classifies the corruption into three classes:

· Checksum mismatches

· Identity discrepancies

· Parity inconsistency

Without going into much detail on each of the above classes (which is explained in the paper), “first” class of corruption (checksum mismatch) is the most prevalent one and represent the class of “silent data corruption”. The paper goes into much detail into each of the above classes and explaining detection mechanisms and scrubbing to maintain data integrity.

Our bitrot implementation would be targeting archival storage (initially) and would be implemented in series of phases (targeting other “realtime” use cases). Initial phase would target just the detection of silent corruption (and maybe some form of recovery for metadata) based on maintaining data checksum per inode (instead of per block). We carry forward some of the design fundamentals explained in the above paper and tune it to fit for GlusterFS. Most ideas fit cleary at the block level, therefore, we inherit whatever makes sense for us. Our implementation would also maintain identity information at a loose level (we'll go into a bit of detail later) and has some form of shallow/deep data scrubbing.

Data checksumming
Our bitrot implementation maintains checksums per file. This is different than what any block based filesystem would do in order to maintain data checksums (checksum per block alongside the data block). Our implementation could too maintain block checksums (and effectively store the whole lot of “virtual block” checksums), we choose not to do this for the first cut. Checksums are maintained as an extended attribute for the file and is the SHA256 hash (or Adler-32 if block based) of it's data.

Policy for checksum calculation is lazy: deferred until a certain period of time. IOW, checksum calculation is not inline in the data path as that would be too expensive given that checksums are maintained per file. Therefore, all the heavy lifting is done out-of-band of the data path by a separate daemon process – bitrot daemon. A daemon per brick is responsible for checksum maintainance for data local to the brick. As mentioned earlier, checksum calculation is lazy, though the laziness factor is policy driven: either based on time expiry or immidiately after a file descriptor release (on a close()). As an example open(),close(),open(),close() would compute the checksum twice for a given inode. Time expiry based checksum computation follows similar semantics, the noticable difference being deferred checksum computation after last updation. Our implementation would be based on GlusterFS Changelog (Journaling translator), details of which are not covered in this document.

Identity information
Data integrity is maintained by embedding the inode # and offset (knows as “backpointer”) in the data block. This helps in validating the integrity of the block during a read operation. This is used to protect against “lost writes” where the drive will signal to the application that data is committed to the disk when infact it hasn't been written or written to the wrong place. The basic idea here is to verify the validity of a data block w.r.t. it's inode. Some filesystems use a similar technique (Backpointer Based Consistency) for crash consistency.

This kind of protection scheme is hard (if not impossible) to do in GlusterFS. But there does exist a very loose protection scheme at the metadata level as a check for inode number correctness (during lookup) in posix translator. This can be hardened by maintaining a checksum (rolling checksum) of all GlusterFS metadata and validating it during lookup. This could be extended to be parity based and support recovery by means of validating the relevant bits with other replica(s).

It's also benificial to maintain checksum of checksums (combining data and metadata checksums; also called as the master checksum) as an additional layer of integrity validation. Therefore, if the data/metadata checksum do not match with the checksum in the integrity segment, it's quicker to validate by using the master checksum to determine if it's the data or the checksum that's corrupted (or maybe both, which is the worst case and probably needs a full recovery from one of it's mirrors).

Data Scrubbing
Data scrubbing is an effective way to pro-actively detect errors by effectively reading each data block and validating it by comparing the block checksum with the checksum stored in the integrity segment. On a checksum mismatch, it's even possible to recover a corrupted block from other disks in the RAID group. Scrubbing operation can either be shallow (metadata checksum validation) or deep (data checksum validation) alongside validation with other replica(s).

Our scrubbing implementation would be a filesystem walk, verifying metadata (shallow) and data integrity (deep) for each inode. Scrubbing operation is user trigerred, maybe once a week. Recovering from checksum mismatches could be based on existing data healing techniques such as trigerring self-heal or using more advanced ways such as Erasure Codes. Recovering from data corruptions would not be a part of the initial implementation.

NOTE

1. Document[1] mentions checksum validation upon access. We may or may not stick with this during
 initial implementation and rely on scrubbing. This is open for discussion.

References
[1]: http://lists.nongnu.org/archive/html/gluster-devel/2014-01/msg00209.html
[2]: https://www.usenix.org/legacy/event/fast08/tech/full_papers/bairavasundaram/bairavasundaram.pdf
